Feynman Diagrams

- Start with Coulomb Scattering just to show the different steps in calculating a cross-section, integrating over the entire phase space and summing over spins.
- Introduce the Feynman rules in QED.
- Calculate a cross section using the Feynman rules.
- Give you a Feynman Diagram to calculate.

Cross-Section Calculations: Coulomb Scattering
(I)

Coulomb Scattering of Spin $\frac{1}{2}$ Particles
This is going to be the first example 21/11/05 of cross-section calculation

$$
\begin{array}{ll}
\text { of cross-section calculation } \\
\begin{array}{ll}
P_{f} & \Psi_{f}
\end{array}=\sqrt{\frac{m}{E_{f} V}} u\left(P_{f} s_{f}\right) e^{-i P_{f} x} \\
A^{\mu}=\left(A^{0}, \overrightarrow{0}\right)=\left(-\frac{z e}{4 \pi k}, \overrightarrow{0}\right) & \Psi_{i}
\end{array}=\sqrt{\frac{m}{E_{i} V}} u\left(P_{i} s_{i}\right) e^{-i P_{i} x} .
$$

$$
\begin{aligned}
& S_{f i}=-i e \int d^{4} x^{\Psi} \Psi_{f} A_{\mu}(x) \gamma^{M} \psi_{i} f+i \Rightarrow \\
& S_{f i}=+i \frac{z e^{2}}{4 \pi} \frac{m}{v} \frac{1}{\sqrt{\varepsilon_{i} \varepsilon_{t}}} \int d^{4} \times \frac{\bar{u}\left(p_{p} S_{f}\right) \gamma^{0} u\left(p_{i} S_{i}\right)}{|\bar{x}|} \times e^{i\left(P_{f}-P_{i}\right) \cdot x}
\end{aligned}
$$

$$
S_{f i}=+i \frac{Z e^{2}}{4 \pi} \frac{m}{V} \frac{1}{\sqrt{E_{i} E_{f}}} \int d x^{0} e^{+i\left(E_{f}-E_{i}\right) x^{0}} x
$$

$$
x \int d^{3} \vec{x} \frac{e^{i\left(\overrightarrow{P_{f}}-\vec{P}_{i}\right) \cdot \vec{x}}}{|\vec{x}|} \overline{u\left(p_{f} s_{f}\right)} \gamma^{0} u\left(p_{i} s_{i}\right)
$$

Next Calculate the integral

$$
I_{1}=\int d^{3} \vec{x} \frac{e^{-i\left(\vec{P}_{f}-\vec{P}_{i}\right) \cdot \vec{x}}}{|\vec{x}|}
$$

$$
\begin{align*}
& I_{1}=\int d^{3} \vec{x} \frac{e^{-i\left(\vec{p}_{f} \cdot \vec{p}\right) \cdot \vec{x}}}{|\vec{x}|}=\int d d^{3} \vec{x} \frac{e^{-i \vec{Q} \cdot \vec{x}}}{|\vec{x}|} \Rightarrow \tag{II}\\
& \vec{Q}=\vec{P}_{f}-\vec{P}_{i} \\
& \begin{array}{l}
I_{1}=\int_{0}^{2 n} d \phi \int_{0}^{n} \sin \theta d \theta \int_{0}^{\infty} r^{2} d r \frac{1}{c} e^{-i|\vec{Q}| \cdot \cos \theta} \rightarrow \\
I_{1}=2 \pi \int_{1}^{-1}(-1) d \cos \theta \int_{0}^{\infty} r d r e^{-i|\vec{Q}| r \cos \theta} \rightarrow
\end{array} \\
& \begin{array}{l}
I_{1}=\int_{0}^{2 \pi} d \phi \int_{0}^{n} \sin \theta d \theta \int_{0}^{\infty} r^{2} d r \frac{1}{c} e^{-i| | \vec{Q} \mid<\cos \theta} \rightarrow \\
I_{1}=2 \pi \int_{-1}^{-1}(-1) d \cos \theta \int_{0}^{\infty} r d r e^{-i l a} \mid r \cos \theta
\end{array} \rightarrow \\
& I_{1}=2 \pi \int_{0}^{1} r d e \int_{-1}^{\pi} d \cos \theta e^{-i / \Delta / t \cos \theta} \rightarrow \\
& \begin{array}{l}
I_{1}=2 \pi \iint_{0}^{0} r d e \int d \cos \theta e \\
I_{1}=2 \pi \int_{0}^{\infty} y^{-1} \frac{1}{(-i) / ब \mid \bar{\phi}}\left(e^{-i / Q^{\prime} / r}-e^{+i \mid \bar{Q} / R}\right) \Rightarrow
\end{array}
\end{align*}
$$

$$
\begin{aligned}
& \left.I_{1}=\frac{4 \pi}{|\vec{Q}|} \int_{0}^{\infty} d r \sin (|\vec{Q}| \cdot \varepsilon)=\frac{4 \pi}{|\vec{Q}|} \int_{0}^{\infty} d r I m e^{i Q t}, \begin{array}{c}
Q \rightarrow Q+i \mu \mu>0 \\
\text { at the end } \mu \rightarrow 0
\end{array}\right\} \Rightarrow \\
& \text { at the end } \mu \rightarrow 0 \\
& I_{1}=\frac{4 \pi}{|\vec{Q}|} I_{m} \lim _{\mu \rightarrow 0} \underbrace{\frac{1}{\int_{0}^{\left(Q+i^{\prime} \mu\right)}(0-1)} d r e^{+i(Q+i \mu) \cdot r}} \\
& \frac{-1}{-\mu+i Q}=\frac{-1(-\mu-i Q)}{\mu^{2}+Q^{2}}=\frac{\mu+i Q}{\mu^{2}+Q^{2}} \\
& I_{1}=\frac{4 \pi}{|\vec{Q}|} \operatorname{Im}\left(\lim _{\mu \rightarrow \infty} \frac{\mu t^{i} \varphi}{\mu^{2}+Q^{2}}\right)=\frac{4 \pi}{|\vec{Q}|} \operatorname{Im}\left(\frac{i}{|\vec{Q}|}\right) \Rightarrow I_{1}=\frac{4 \pi}{|\vec{Q}|^{2}}
\end{aligned}
$$

Wave packets vs. plane waves
at the end the amplitude can be written as:
(iiI)

$$
\begin{array}{r}
S_{f i}=i \frac{z e^{2}}{4 \pi} \frac{m}{v} \frac{1}{\sqrt{E_{i} E_{f}}} \frac{4 \pi}{|\vec{Q}|^{2}} \bar{U}\left(p_{f} S_{f}\right) \gamma^{0} U\left(p_{i} S_{i}\right) \times \\
\times \int d x^{0} e^{+i\left(E_{f}-E_{i}\right) x^{0}} \tag{a}
\end{array}
$$

11 you now replace the integral with $2 \pi \delta\left(E_{f}-G_{i}\right)$ as you should, you get a problem when you square to compute the probability. The reason for this infinity
is that we have not used wave packets but plane is that we have not used wave packets but plane
waves which means we incorrectly have to integrate from $-\infty<x^{0}<+\infty$. Fermi comes to help with $\left.h\right\rangle$ golden vile:
Lets calculate the integral for finite time

$$
\left.\begin{array}{r}
S_{f_{i}=i \frac{Z e^{2}}{4 \pi} \frac{m}{v} \frac{1}{\sqrt{E_{i} E_{r}}} \frac{4 \pi}{|\vec{Q}|^{2}} \bar{u}\left(P_{f} s_{f}\right) \gamma^{0} U\left(P_{i} S_{i}\right)} \\
\times \frac{2}{\left(E_{f}-E_{i}\right)}
\end{array} e^{i\left(\varepsilon_{f}-E_{i}\right) t / 2} \sin \left[\frac{\left(E_{f}-\bar{E}_{i}\right) t}{2}\right] .\right] .
$$

$P_{f i}=\left|S_{f i}\right|^{2} \Rightarrow$

$$
\begin{align*}
p_{f i}=\left(\frac{z e^{2}}{4 \pi}\right)^{2} & \frac{m^{2}}{V^{2}} \frac{1}{E_{f} E_{i}}\left(\frac{4 \pi}{|\vec{G}|^{2}}\right)^{2} \times \\
& \times\left|u\left(p_{f} S_{f}\right) \gamma^{0} u\left(p_{i} S_{i}\right)\right|^{2} \times \\
& \frac{4}{\left(E_{f}-E_{i}\right)^{2}} \sin ^{2}\left[\frac{\left(E_{f}-E_{i}\right)}{2} t\right] \tag{8}
\end{align*}
$$

Now concentrate on
$\frac{4}{\left.\left(t_{-}-E\right)^{2}\right)} \sin ^{2}\left(\frac{(q-B) t}{2}\right)$ which gives a contribution summed

$$
\begin{equation*}
=2 p(\xi) t \int_{-\infty}^{+\infty} \frac{\sin ^{2} \phi}{\phi^{2}}=2 \pi t p\left(\xi_{t}\right) d\left(\frac{E_{1}-a_{i}}{2} t\right) \tag{B}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{0}^{t} d t e^{i\left(\xi_{-}-E_{i}\right) t}=\frac{1}{i\left(\varepsilon_{-}-\varepsilon_{i}\right)}\left(e^{i\left(\xi_{f}-E_{i}\right) t}-1\right) \\
& =\frac{1}{i\left(\varepsilon_{4}-E_{i}\right)} e^{i\left(\varepsilon_{4}-E_{i}\right) t / 2}\left(e^{i\left(E_{f}-E_{i}\right) t / 2}-e^{-i\left(\varepsilon_{4}-\varepsilon_{i}\right) t / 2}\right) \\
& =\frac{1}{\mu\left(t_{1}-a\right)} e^{i\left(E_{1}-E_{i}\right) t / 2} 2 . \dot{y} \sin \left[\frac{\left(E_{t}-E_{i}\right) t}{2}\right] \\
& =\frac{0}{\left(E_{f}-E_{i}\right)} e^{i\left(E_{1}-E_{i}\right) t / 2} \sin \left(\frac{\left(E_{f}-E_{i}\right) t}{2}\right)
\end{aligned}
$$

Fermi's Golden Rule

This is what Feemi stated by his golden I rule: The time integral contribution when calculating propabilities is

$$
2 \pi t \rho\left(E_{f}\right)
$$

in other words $\left.P_{f i}=2 \pi t\left|\langle f| H_{\text {mn }}\right| i\right\rangle\left.\right|^{2} \rho\left(E_{f}\right)$ and $\left.\quad \Gamma_{f_{i}}=\frac{d P_{f_{i}}}{d t}=2 \pi\left|\langle f| H_{\text {inT }}\right| i\right\rangle\left.\right|^{2} \rho\left(E_{F}\right)$
$\Gamma_{f i}$ is the rate of interaction, which it divided by the incident flux of particles and integrated over the extine lineal state will give you the Cuoss-Sectron Bach to Coulomb scattering now:

$$
\begin{aligned}
& P_{f i}=\left(\frac{Z e^{2}}{4 \#}\right)^{2} \frac{m^{2}}{V^{2}} \frac{1}{E_{f} E_{i}}\left(\frac{4 \pi}{|\vec{Q}|^{2}}\right)^{2} \times \\
& \times\left|\bar{u}\left(p_{f} s_{f}\right) \gamma^{0} u\left(p_{i} s_{i}\right)\right|^{2} x \\
& 2 \pi t \underbrace{\rho\left(E_{t}\right)}_{\delta\left(c_{t}-\varepsilon_{i}\right)} \\
& \Gamma_{f i}=\frac{d P_{f i}}{d t}=\frac{z^{2} e^{4}}{|\bar{Q}|^{4}} \frac{m^{2}}{V^{2}} \frac{1}{E_{f} E_{i}}\left|\bar{u}\left(P_{f} S_{i}\right) \gamma^{0} U\left(P_{i} s_{i}\right)\right|^{2} \pi_{x}
\end{aligned}
$$

The cross-section can now be computed
using $\Gamma_{t i}$ and the flux \vec{F} d the incident beam.

$$
\vec{F}-\frac{d \infty}{} \cdot \Delta s \cdot \Delta t \cdot \vec{V}=d \infty \vec{V} \sim \sigma^{-2} s^{-1} e^{-1}
$$

$\stackrel{\Rightarrow}{\Delta t \cdot \bar{c}}$
$d(x)=$ particle density ingle beam

Bach to work.

$$
\begin{gathered}
d \bar{\sigma}=\frac{z^{2} e^{4}}{|\vec{Q}|^{4}} \frac{m^{2}}{\left|\vec{v}_{i}\right|} \frac{1}{E_{i} E_{f}}\left|u\left(p_{f} s_{p}\right) \gamma^{\circ} u\left(p_{i} ; i\right)\right|^{2} 2 \pi \delta\left(E_{-}-z_{i}\right) x \\
\times \frac{d^{3} p_{f}}{(2 \pi)^{3}}
\end{gathered}
$$

Costas Foudas; Imperial College

Summing over spins
(ViI)

Assume that the original beam is unpolacized So we need to average over the initial spins: this means" $\frac{1}{2} \sum_{s_{i}} "$. We also need to sum over the final spins " $\sum_{s_{t}}$ "
$d \sigma=\frac{4 z^{2} a^{2}}{|\vec{Q}|^{4}} \frac{m^{2}}{V_{i} E_{i} E_{f}}\left|u_{f} \gamma^{0} u_{i}\right|^{2} \delta\left(E_{f}-E_{i}\right) \underbrace{d^{3} p_{f}}_{p_{f}^{2} d p_{f} d \Omega}$

$$
\frac{d \xi}{d \Omega}=\int \frac{4 z^{2} a^{2}}{|\vec{Q}|^{4}} \frac{m^{2}}{v_{i} E_{i} E_{f}}\left|u_{f} \gamma^{0} u_{i}\right|^{2} \partial\left(E_{f}-E_{i}\right) p_{f}^{2} d p_{f}
$$

but $E_{f}^{2}=P_{f}^{2}+m^{2}-\mathcal{Z} E_{f} d E_{r}=\neq P_{f} d P_{f} \Rightarrow$

$$
d P_{f}=\frac{E_{f} d \sigma_{t}}{P_{f}}
$$

$$
\begin{aligned}
& \text { So } \\
& \text { So } \frac{P_{f}^{2} d P_{f}}{\left|\vec{V}_{i}\right| E_{i} E_{t}}=\frac{P_{f}^{2}}{\left|\vec{V}_{i}\right| E_{c} E_{t}} \frac{E_{f} d E_{f}}{R_{t}}=\frac{P_{f} d E_{f}}{\left|\vec{V}_{i}\right| E_{i}}=\frac{P_{t} d E_{f}}{\frac{P_{i} E_{i}^{\prime}}{E_{i}}} \\
& =\frac{P f d E_{f}}{P_{i}} \\
& \therefore d \sigma=\int \frac{4 z^{2} a^{2}}{|\vec{Q}|^{4}} m^{2} \quad\left|u_{f} r^{\circ} u_{i}\right|^{2} \delta\left(\varepsilon_{t}-\varepsilon_{i}\right) \frac{P_{t}}{P_{i}} d \varepsilon_{t} \\
& \Rightarrow \quad \frac{d \delta}{d \Omega}=\frac{4 z^{2} a^{2} m^{2}\left|u\left(p_{f} s_{f}\right) r^{0} u\left(p_{s} s_{i}\right)\right|^{2}}{|\bar{Q}|^{4}}
\end{aligned}
$$

Two trace theorems
in CONCLUSION:

$$
\sum_{S_{i}} \sum_{s_{f}}\left|U\left(p_{f} s_{f}\right) \gamma^{0} U\left(p_{i} S_{i}\right)\right|^{2}=\operatorname{Tr}\left(\gamma^{0} \frac{\gamma_{i}+m}{2 m} \gamma^{0} \frac{p_{f}+m}{2 m}\right)
$$

our the closs-section is then

$$
\begin{aligned}
& \frac{d \sigma}{d \Phi}=\frac{4 z^{2} a^{2} m^{2}}{2 /\left.\vec{Q}\right|^{4}} T_{2}\left(\gamma^{0} \frac{\chi_{i}+m}{2 m} \gamma^{0} \frac{\gamma_{f}+m}{2 m}\right) \\
& \operatorname{Tr}\left(\gamma^{0} \frac{\gamma_{f}+m}{2 m} \gamma^{0} \frac{\eta_{f}+m}{2 m}\right)=\frac{1}{4 m^{2}} \operatorname{Tr}\left(\gamma^{0}\left(\gamma_{i}+m\right) \gamma^{0}\left(f_{f}+m\right)\right) \\
& =\frac{1}{4 m^{2}} \operatorname{Tr}\left[\left(\gamma^{0} \gamma_{i}+m \gamma^{0}\right)\left(\gamma^{0} \gamma_{f}+\gamma^{0} m\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4 m^{2}} T_{v}\left[\gamma^{\circ} \nabla_{i} \gamma^{\circ} \%_{f}+m^{2}\right]=\frac{1}{4 m^{2}}\left[\operatorname{Tr}\left(\gamma \rho_{i} \partial^{\circ} \%_{f}\right)+4 m^{2}\right] \\
& \text { BuT } \\
& \sqrt{\operatorname{Tr}}\left(d_{1} d_{2} q_{3} d_{4}\right)=4\left(\left(a_{i} a_{2}\right)\left(a_{3} a_{4}\right)+\left(a_{1} \cdot a_{4}\right)\left(a_{i} a_{3}\right)+\right. \\
& \left.-\left(a_{i} a_{3}\right)\left(a_{i} a_{4}\right)\right) \\
& =\frac{1}{4 m^{2}}\left\{4\left(E_{i} E_{f}+E_{f} E_{i}-1\left(\varepsilon_{i} E_{f}-\vec{p}_{i} \vec{p}_{f}\right)+4 m^{2}\right\}\right.
\end{aligned}
$$

$$
=\frac{1}{4 m^{2}} 4\left[2 E_{f} E_{i}-E_{f} E_{i}+\vec{p}_{f} \cdot \vec{p}_{i}+m^{2}\right]
$$

but $\varepsilon_{i}=\varepsilon_{f}$

$$
=\frac{1}{m^{2}}\left[2 / E^{2}-F^{2}+\vec{P}_{f} \cdot \vec{P}_{i}+m^{2}\right]
$$

$$
=\frac{1}{m^{2}}\left[E^{2}+p^{2} \cos \theta+E^{2}-\vec{p}^{2}\right]=\frac{1}{m^{2}}\left[2 E^{2}-p^{2}(+\cos \theta)\right]
$$

$$
=\frac{1}{m^{2}}\left[2 E^{2}-2 p^{2} \sin ^{2} \frac{\theta}{2}\right]=\frac{2}{m^{2}}\left(E^{2}-p^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

$$
=\frac{2}{m^{2}}\left(E^{2}-(\beta E)^{2} \sin ^{2} \theta / 2\right)=\frac{2 E^{2}}{m^{2}}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

(T)

$$
\left.\stackrel{(\nabla)}{\Rightarrow} \frac{d \sigma}{d \Theta}=\frac{4 z^{2} a^{2} m^{2}}{2|\vec{\phi}|^{4}} \frac{2 E^{2}}{m^{2}}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)\right\}
$$

However $\vec{Q}^{2}=\vec{p}_{f}^{2}+\vec{p}_{i}^{2}-2 \vec{p}_{f} \cdot \vec{p}_{i}=2 p^{2}-2 p^{2} \cos \theta$

$$
\vec{Q}^{2}=2 p^{2}(1-\cos \theta)=4 p^{2} \sin ^{2} \theta / 2
$$

$$
\frac{d \sigma}{d O}=\frac{4 z^{2} a^{2} \mu^{2}}{\left\{\left[4 \cdot \cdot^{2} \sin ^{2} \frac{\theta}{2}\right]^{2}\right.} \frac{d E^{2}}{m y^{2}}\left(1-\beta^{2} \sin ^{2} \theta\right)
$$

Costas Foudas; Imperial College

Coulomb Scattering: The Final Result

$$
\begin{aligned}
& \frac{d \sigma}{d \Phi}=\frac{z^{2} a^{2} E^{2}}{4 p^{4} \sin ^{4} \frac{\theta}{2}}\left(1-\beta^{2} \sin ^{2} \theta / 2\right) \rightarrow \\
& \frac{d \sigma}{d \Omega}=\frac{z^{2} \alpha^{2}}{4 p^{2} \beta^{2} \sin ^{4}\left(\frac{\theta}{2}\right)}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)
\end{aligned}
$$

Coulomb Scattering: Relativistic and non-relativistic approximations

$$
\begin{aligned}
& \text { 11 } \beta \ll 1 \quad \text { (Nom Relativist limit) } \\
& \begin{array}{l}
\frac{d \sigma}{d Q}=\frac{z^{2} a^{2}}{4 p^{2} v^{2}} \frac{1}{\sin ^{4} \theta / 2}=\frac{z^{2} a^{2}}{4 p^{4}} m^{2} \frac{1}{\sin ^{4}(\theta / 2)} \\
p^{2}=2 m E \rightarrow p^{4}=4 m^{\prime} E^{2}
\end{array}
\end{aligned}
$$

$$
\frac{d 6}{d \varepsilon}=\frac{z^{2} a^{2} u^{L} L^{L}}{4 \cdot 4 y^{\prime} \varepsilon^{2}} \frac{1}{\sin ^{4}\left(\frac{\theta}{2}\right)} \Rightarrow
$$

$$
\frac{d \sigma}{d g}=\left(\frac{Z a l}{2 E}\right)^{2}\left(\frac{(\cos \theta / 2}{(\sin \theta / 2)^{2}}\right)^{2} \beta \pi I
$$

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z a}{4 E}\right)^{2} \sin ^{-4}\left(\frac{\theta}{2}\right) \quad \beta \ll
$$

How to compute cross-sections
RUTHERFORD SCATTERING OF $S=1 / 2$
particles from a coulomb potential

$$
\frac{d \sigma}{d \Omega}=\frac{z^{2} \alpha^{2}}{4 p^{2} \beta^{2} \sin ^{4}\left(\frac{\theta}{2}\right)}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right) \Longrightarrow
$$

...and the final result is :
(to get the units correct)

$$
\frac{d \sigma}{d \Omega}=\frac{z^{2} \alpha^{2} \hbar^{2}}{4 p^{2} \beta^{2} \sin ^{4}(\theta / 2)}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

Assume that the momentum is in Gould

$$
\begin{aligned}
& \text { DG } \Rightarrow \hbar c=197.3 \mathrm{MeV} \mathrm{fm} \\
& \therefore\left(\frac{\hbar c}{G e v}\right)^{2}=\left[\frac{197.3 \mathrm{MeV} \mathrm{fm}}{10^{3} \mathrm{MeV}}\right]^{2}=\frac{197.3^{2} 10^{-30} \mathrm{~m}^{2}}{10^{6}} \\
& \left.\begin{array}{c}
=197.3^{2} 10^{-36} \mathrm{~m}^{2} \\
1 \text { Brain }=10^{-28} \mathrm{~m}^{2}
\end{array}\right\} \Rightarrow \\
& \left(\frac{\hbar c}{\operatorname{Gev}}\right)^{2}=197.3^{2} 10^{-36} 10^{28} \mathrm{Barn}=197.3^{2} 10^{-8} \mathrm{~B} \\
& =389.3 \mu B \\
& \therefore \frac{d \sigma}{d \Omega}=\frac{Z^{2} \alpha^{2}}{4 P^{2}(G V)} 389.3 \mu B \frac{1-\beta^{2} \sin ^{2} \frac{\theta}{2}}{\sin ^{4} \frac{\theta}{2}}
\end{aligned}
$$

These stuff you should know from your undergraduate courses but just in case I review them here........

Costas Foudas; Imperial College

