An Introduction to Microprocessors

Outline:

- Numerical representations
- Registers and Adders
- ATmega103 architecture
- AVR assembly language
- Elementary example program
- STUDI07
- AVR Assembler
- Downloading with PonyProg

Numbers in a computer:

Computers store arithmetic units called bits.

Each bit is represented by an electrical signal which is either high or low (voltage levels). high $\Rightarrow 1$ and low $\Rightarrow 0$ Normal Logic
Often high $\Rightarrow 0$ and low $\Rightarrow 1$

fligh and Low

In this course we use TTL or TTL-like (CMOS) technology :

It is actually a bit more complicated than this since there are actually different thresholds for inputs and outputs and noise margins (indicated here in RED) but this may be addressed later If time permits.

Making a Zero or and One

- How do you actually make a or or 1 ?

It is clear that depending upon the switch position the line will be either ' 0 ' or ' 1 '

Storing 0 and 1 : Registers

- Registers are electronic devices capable of storing 0 or 1
-

D-FLIP-FLOPs are the most elementary registers which can store one bit

- 8 DFFs clocked together make an one byte register

The D-Flip-Flop (DFF)

Byte Register I

Byte register that stores a byte

Prof. Costas Foudas, Phys. Dept. F3.303, Univ. of Ioannina, x8750

Byte Register II

It exists in one package :

Byte Stored
10/23/2019

Prof. Costas Foudas, Phys. Dept. F3.303, Univ. of Ioannina, x8750

Bits \& Bytes :

- Bit 1,0
- Nibble 4 bits
- Byte 8 bits
- Word 16 bits or 2 bytes1 Kbyte = 1024 Bytes = 8Kbits
- 1 Mbyte $=1024$ Kbytes $=8^{* 1} 1024$ Kbits
- 1 Gbyte = 1024 Mbytes =......

Binary Representation

This representation is based on powers of 2. Any number can be expressed in terms of 0 and 1

Example: $5=101_{2}=1 * 2^{2}+0 * 2^{1}+1 * 2^{0}$

Example: $9=1001_{2}=1 * 2^{3}+0 * 2^{2}+0 * 2^{1}+1 * 2^{0}$
Exercise: Convert any way you can the numbers 19, 38, 58 from decimal to binary. (use calculator or C program)

Hexadecimal Representation

- This representation is based on powers of 16. Any number can be expressed in terms of:

$$
\mathbf{0}, 1,2, \ldots, 9, A, B, C, D, E, F(0,1,2, \ldots, 10,1,1,1,1,1,1,4,1,15)
$$

Example: $256=100_{16}=1 * 16^{2}+0 * 16^{1}+0 * 16^{0}$
Example: $1002=3 \mathrm{EA}_{16}=3 * 16^{2}+14 * 16^{1}+10 * 16^{0}$
Exercise: Convert any way you can the numbers 1492, 3481, 558 from decimal to hex. (use calculator or C program)

Boolean Operations

- NOT: NOT(101) = 010
- AND: AND(10101; 01010) = 0
- OR: OR(10101; 01010)=11111
- SHIFT L: SHIFT L(111) = 1110
- SHIFT R: SHIFT R(111) = 011

Exercise: (1) Find NOT(AAA)
(2) Find OR(AAA; 555)
(3) Find AND (AEB 123; FFF000)

Why shift is
Important?
Try SHIFT R(011)

Negative Numbers

- How do you represent negative numbers ?
 Using 2's Complement Arithmetic

Recipe : Take the complement of the number and
add 1.
Example: Consider the number $3=011_{2}$
Then -3 is NOT(011) $+1=100+1=101$
Exercise: Consider a 4 bit machine. Derive all possible positive and negative numbers

4-bit Negative Numbers

- Consider a 4 bit machine. Find all positive and negative numbers you can have

Integer	Sign Magnitude	2's compl ement
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
0	0000	0000
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	$1000(-0)$	1000

Characters

- The English characters you see on your computer screen are made also by using numbers.
- There is an one-to-one correspondence between all characters and a set of byte numbers world-wide.
- The computers know to interpret these bytes as characters.

Dec	Hx Oct Char		Dec Hx Oct Html Chr	Dec Hx Oct Html Chr	Dec Hx Oct	Html Chr
0	0000 NUL	(null)	3220 040 \&\#32; Space	6440100 \&\#64;	9660140	\&\#96;
1	100150 H	(start of heading)	3321041 \&\#33;	6541101 \&\#65; A	9761141	\&\#97; a
2	2002 STX	(start of text)	3422042 \&\#34;	6642102 \&\#66; B	$98 \quad 62142$	\&\#98; b
3	3003 ETX	(end of text)	3523043 \&\#35; \#	6743103 \#\#67; C	9963143	\&\#99;
4	4004 E0T	(end of transmission)	3624044 \&\#36; \%	6844104 \&\#68; D	10064144	\&\#100; d
5	5005 ENQ	(enquiry)	3725045 \&\#37; \%	6945105 \&\#69; E	10165145	*\#101; e
6	6006 ACK	(acknowledge)	3826046 \&\#38; \&	7046106 \&\#70; F	10266146	\&\#102;
7	7007 BEL	(bell)	3927047 \&\#39;	7147107 \&\#71; G	10367147	\&\#103; g
8	8010 BS	(backspace)	4028050 \& 4 40; (7248110 \&\#72; H	10468150	\&\#104; h
9	9011 TAB	(horizontal tab)	4129051 \&\#41;)	7349111 \&\#73;	10569151	\&\#105;
10	A 012 LF	(NL line feed, new line)	42 2A 052 \&\#42;	74 4A 112 \&\#74; J	106 6A 152	\&\#106; j
11	B 013 VT	(vertical tab)	43 2B 053 \&\#43; +	75 4B 113 \& \# 75; K	107 6B 153	\&\#107:
12	C 014 FF	(NP form feed, new page)	44 2C 054 \&\#44;	76 4C 114 \&\#76; L	108 6C 154	\&\#108; 1
13	D 015 CR	(carriage return)	45 2D 055 \&\#45;	77 4D 115 \&\#77; M	109 6D 155	\&\#109; m
14	E 016 S0	(shift out)	46 2E 056 \&\#46;	78 4E 116 \&\#78; N	1106 E 156	\&\#110; n
15	F 017 SI	(shift in)	47 2F 057 \&\#47; /	79 4F 117 \&\#79; 0	1116 F 157	\&\#111;
16	10020 DLE	(data link escape)	4830060 \&\#48; 0	$80-50120$ \&\#80; P	11270160	\&\#112; p
17	11021 DCl	(device control 1)	4931061 \&\#49; 1	8151121 \&\#81; 0	11371161	¢\#113; 9
18	12022 DC2	(device control 2)	5032062 \&\#50; 2	8252122 \&\#82; R	11472162	\&\#114;
19	13023 DC3	(device control 3)	5133063 \&\#51; 3	8353123 \&\#83; 5	11573163	\&\#115;
20	14024 DC4	(device control 4)	5234064 \&\#52; 4	8454124 \&\#84; T	11674164	\&\#116;
21	15025 NAK	(negative acknowledge)	53 35 065 \&\#53; 5	8555125 \&\#85; U	11775165	\&\#117; u
22	16026 SYN	(synchronous idle)	5436066 \&\#54; 6	8656126 \&\#86; V	11876166	\&\#118; v
23	17027 ETB	(end of trans. block)	5537067 \&\#55; 7	8757127 \&\#87; W	11977167	¢\#119; w
24	18030 CAN	(cancel)	5638070 \&\#56; 8	8858130 ¢\#88; X	12078170	\&\#120;
25	19031 EM	(end of medium)	5739071 \&\#57; 9	8959131 \&\#89; Y	12179171	\&\#121: Y
26	1A 032 SUB	(substitute)	58 3A 072 \&\#58;	90 5A 132 \&\#90; Z	122 7A 172	\&\#122;
27	1B 033 ESC	(escape)	59 3B 073 \&\#59; ;	91 5B 133 \&\#91; [123 7B 173	\&\#123;
28	1 C 034 FS	(file separator)	60 3C 074 \& \#60; <	92 5C 134 \&\#92;	1247 C 174	¢\#124;
29	1D 035 GS	(group separator)	61 3D 075 \&\#61;	93 5D 135 \&\#93;]	1257 D 175	\&\#125;
30	1E 036 RS	(record separator)	62 3E 076 \&\#62; >	94 5E 136 \&\#94;	$1267 \mathrm{E} \quad 176$	\&\#126;
31	1 F 037 US	(unit separator)	63 3F 077 \&\#63; ?	95 5F 137 \&\#95;	127 7F 177	\&\#127; DEL

How do the computers do all these ?

- You may remember from the first year the gates that form an AND, OR, NOT:

- Any Digital device can be made out of either ORs and NOTs or ANDs and NOTs.
- Truth Tables :

A	B	AND
0	0	0
0	1	0
1	0	0
1	1	1

A	B	OR
0	0	0
0	1	1
1	0	1
1	1	1

A	NOT
0	1
1	0

DeMorgan's Theorem

- You can swap ANDs with ORs if at

 the same time you invert all inputs and outputs :

Exercise: Write to truth table for both and prove that this is correct

An AND out of NOTs and ORs

Exercise: Test the claim that you can make any logic device exclusively out of NOTs and ORs by making and AND out of NOTs and ORs:

Answer:

One can test explicitly that this device has an identical truth table as the AND gate.

Exercise: Exclusive OR

- Construct an exclusive OR gate using OR, AND, AND NOT:

A	B	XOR
0	0	0
0	1	1
1	0	1
1	1	0

The Exclusive OR

- Solution:

The D-Flip Flop

- Making a DFF using gates

Prof. Costas Foudas, Phys. Dept. F3.303, Univ. of Ioannina, x8750

How do Computers Add ?

- Make a 2 bit adder with a carry_in and a carry out :

Cin	A	B	SUM	Cout
0	1	0	1	0
0	0	1	1	0
0	0	0	0	0
0	1	1	0	1
1	1	0	0	1
1	0	1	0	1
1	0	0	1	0
1	1	1	1	1

Binary addition example (3-bIT MACHINE)

$$
A=111_{2}, B=111_{2}, C=A+B
$$

$$
\begin{array}{r}
111 \\
+\frac{111}{1110} \text { (A) } \\
\hline \begin{array}{l}
111 \\
\text { Result } \\
\text { Carry }
\end{array}
\end{array}
$$

Two Bit Adder with Carry

- Answer:

Prof. Costas Foudas, Phys. Dept. F3.303, Univ. of Ioannina, x8750

Avithmetic Logic Unit (ALU)

- Center of every computer:

8-BIT ADDER

with what you already know

