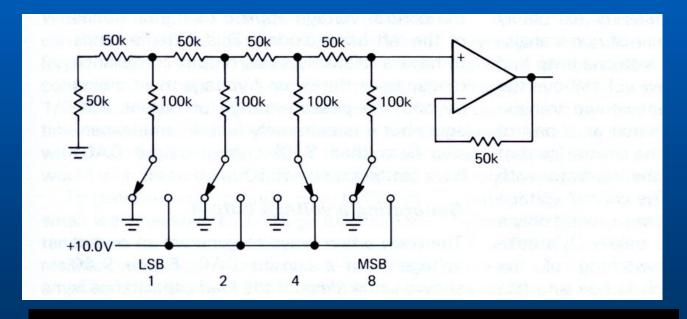

Digital to Analog Converters

Recall: The 741 Op.Amp IV

Summing Amplifier:

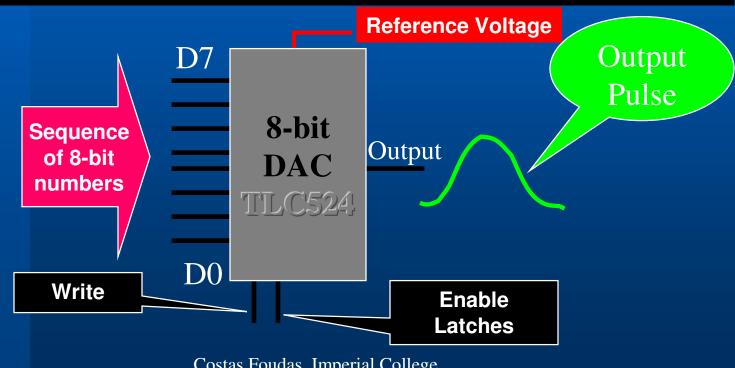


Exercise : Show that $V_{out} = -(V1+V2+V3)$

The 741 Op.Amp IV

R-2R Network to convert digital to analog

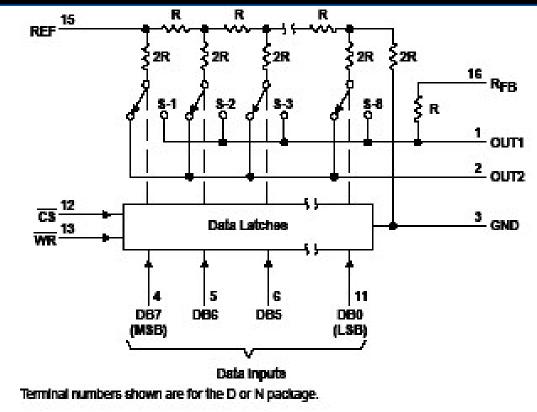
By now you should know how does It work...


2/20/2004

Rm: 508, x47590

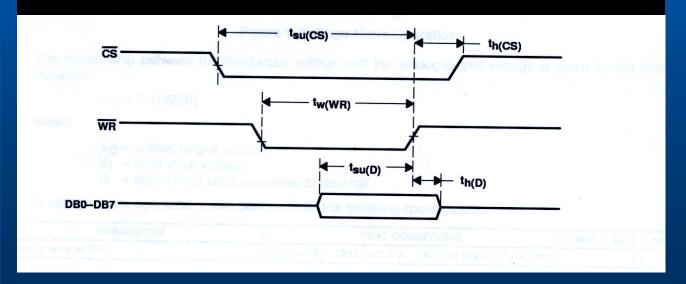
Operation I

The DIGITAL to ANALOG CONVERTERS (DAC) are devices that convert digital to analog signals:



Costas Foudas, Imperial College, Rm: 508, x47590

Operation II


The basic operational idea of the DAC we will be using is:

Write Cycles of the TLC7524

The DAC has internal registers to store the data (1 Byte) and signals which control the write operation (CS*, WR*):

The TLC7524 DAC

For your analog signal generator you will be using an 8-bit DAC to convert the 8-bit Signals, from the ATmega103 ports, to analog Signals of given frequency, amplitude and offset.

RFB REF VDD WR* CS* B0 B1 B2

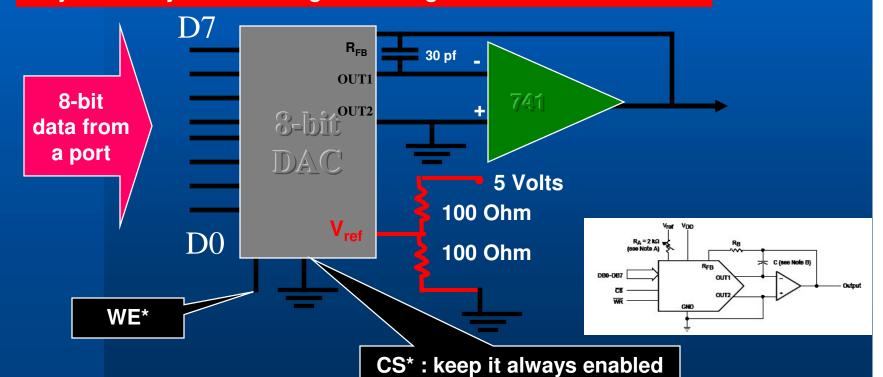
TLC7524

OUT1* OUT2* GND B7 B6 B5 B4 B3

1 2 3 4 5 6 7 8

Costas Foudas, Imperial College, Rm: 508, x47590

The TLC7524 Data Sheet


Recommended operating conditions:

A SUR OF IS SURE IN IN	INS OUR WIND LIGHTAL	V	V _{DD} = 5 V			V _{DD} = 15 V		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}		4.75	5	5.25	14.5	15	15.5	٧
Reference voltage, V _{ref}			±10			±10	1.88	٧
High-level input voltage, VIH		2.4	12.5		13.5	22.5	LGE	٧
Low-level input voltage, V _{IL}			100	0.8		100	1.5	٧
CS setup time, t _{Su(CS)}		40			40	- 20		ns
CS hold time, th(CS)		0			0		la management	ns
Data bus input setup time, t _{su(D)}		25	0.5		25	0.0	N.F.S	ns
Data bus input hold time, th(D)		10			10			ns
Pulse duration, WR low, tw(WR)		40			40	and the same of	Transaction of the second	ns
Operating free-air temperature, T _A	TLC7524C	0	ge (con	70	0		70	°C
	TLC7524I	-25		85	-25		85	
	TLC7524E	-40		85	-40		85	

Producing a Voltage Level

You can write numbers to the DAC in a similar way as with the 3-byte memory module using the ATmega103 Ports

Costas Foudas, Imperial College, Rm: 508, x47590

Task Plan

Design and construct a **Signal Generator**:

- The ATmega103 should be used to design a signal generator. The Amplitude, Frequency and Voltage offset should be subject to change under program control.
- The signals should be produced using a DAC and an Operational Amplifier driven by one of the ATmega103 ports.
- The generator should have a user interface.
- The LCD should be used to display a menu and the given frequency amplitude and offset settings.
- The Keyboard should be used for user input.