
2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 1

ATmega103 Assembly I ATmega103 Assembly I

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 2

Outline:Outline:

� ATmega103 architecture
� AVR assembly language
� Elementary example program
� AVR Assembler
� Using the STUDIO3.52 simulator
� Downloading with PonyProg

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 3

The ATmega103 MicroprocessorThe ATmega103 Microprocessor

� In this course you will be using the
ATmega103 processor mounted on an
ATMEL programming board

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 4

The ATMEL BOARDThe ATMEL BOARD

� Connecting the board with your PC

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 5

ATmega103 diagramATmega103 diagram
♣♣♣♣ RISC Architecture
♣♣♣♣ 121 Instructions
♣♣♣♣ 32x8 Registers
♣♣♣♣ 4 MIPS @ 4 MHz

♣♣♣♣ 128 Kbytes In-System

Prog. Flash Memory

♣♣♣♣ 4 Kbytes SRAM

♣♣♣♣ 4 Kbytes In-System

EEPROM

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 6

ATmega103 Peripherals IATmega103 Peripherals I

♣♣♣♣ 6 PORTS;
♣♣♣♣ 4 Bi-Directional

♣♣♣♣ 1 Output
♣♣♣♣ 1 Input

♣Port A 8-bit I/O
SRAM ADDR/DATA

♣Port C SRAM
♣ADDRESS

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 7

ATmega103 Peripherals IIATmega103 Peripherals II

♣♣♣♣ Prog. Watchdog Timer
♣♣♣♣ Real Time Counter
♣ SPI Interface
♣ UART

On Chip analog
Comparator with
Interrupt.

8-Channel 10 Bit ADC
with interrupt

Interrupt Unit

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 8

The ATmega103 Architecture IThe ATmega103 Architecture I
♣Your Program resides in this
128 Kbytes memory in .hex
Intel format (hex numbers)

The Program Counter
Keeps track which
instruction is to be
executed next

The PC value at a subroutine call
is stored in SRAM and after the
subroutine execution (return) it
is increased by 1 and loaded
back.

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 9

The ATmega103 Architecture IIThe ATmega103 Architecture II

32 General Purpose
Registers

The Arithmetic Logic
Unit operates on the
32 registers

8-bit Data Bus

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 10

The ATmega103 Memory MapThe ATmega103 Memory Map

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 11

AVR Assembly LanguageAVR Assembly Language

•••• Direct access to the architecture
of the processor

� Direct use of the machine
registers memory and stack

� Full control of the processor
� Faster

Why Assembly ?

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 12

RegistersRegisters

� You can zero (clear) them by:

� There are 32 registers r0-r31 on
ATmega103. You may name them
in a way that you can remember:

Example: clr r16 ; This would load $00 on r16

Example: .def InPutRegister = r16

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 13

Registers IRegisters I

� You can set them to ones by:

Example: ser r16 ; This would load $FF on r16

Remember the D-Flip-Flop ??

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 14

Registers IIRegisters II

� Both CLR and SER are Direct Single
Register Addressing because:

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 15

Loading a registerLoading a register

� You can set the contents of r16
by: ldi InPutRegister, $AA

The ldi command will load with the HEX value $AA
to register InPutRegister which is just r16.

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 16

Two register commandsTwo register commands

� Introduce one more register r15:

mov RegisterTwo, InPutRegister

.def RegisterTwo = r15

� The following command:

will transfer the contents of
r16 ($AA) to r15

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 17

Direct two registerDirect two register

MOV Rd, Rx Note: that the direction goes
Against intuition:

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 18

I/O Direct AddressingI/O Direct Addressing

IN Rd, PINX
OUT PORTX, Rx ; X is A-F

To read or write to the ATmega103 ports
use the commands:

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 19

Port Example:Port Example:

PORTA : OUTPUT Reg.

DDRA : Direction Reg.

PINA : INPUT (no Reg.)

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 20

Setting up a port:Setting up a port:

; ******* Port B Setup Code ****
ldi r16, $FF ;
out DDRB , r16 ; Port B Direction Register
ldi r16, $FF ; Init value
out PORTB, r16 ; Port B value

; ******* Port D Setup Code ****
ldi r16, $00 ; I/O:
out DDRD, r16 ; Port D Direction Register
ldi r16, $FF ; Init value
out PORTD, r16 ; Port D value

PORTD : INPUT PORT

PORTB : OUTPUT PORT

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 21

Program Header I:Program Header I:

; ** ATmega103(L) Assembly Language File - IAR Assembler Syntax **

.ORG 0

.include "m103def.inc“ ; Add required path to IAR Directory
RJMP Init

; ** Author : Costas Foudas
; ** Company : Imperial College
; ** Comment : Program Header; PORTB=OUT, PORTD=IN

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 22

Program Header II:Program Header II:

Init:

; ************* Stack Pointer Setup Code
ldi r16, $0F ; Stack Pointer Setup
out SPH,r16 ; Stack Pointer High Byte
ldi r16, $FF ; Stack Pointer Setup
out SPL,r16 ; Stack Pointer Low Byte

; ******* RAMPZ Setup Code ****
ldi r16, $00 ; 1 = EPLM acts on upper 64K
out RAMPZ, r16 ; 0 = EPLM acts on lower 64K

; ******* Comparator Setup Code ****
ldi r16,$80 ; Comparator Disabled, Input

; Capture Disabled
out ACSR, r16 ; Comparator Settings

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 23

Example LED Program:Example LED Program:

Main:
IN r16, PIND

OUT PORTB, r16

rjmp Main

Read in PortD

Write the PortD
input to the PortB
output register

Go back to Main

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 24

Setting up a code directory:Setting up a code directory:

Open a directory where you will store you code:

Down-load in this directory the files:
LEDIO.ASM and m103def.inc from the course
web page (Lecture 2b):

Make sure you have : LEDIO.ASM,
m103def.inc

in your code directory

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 25

Getting Started with STUDIO 3.52 :Getting Started with STUDIO 3.52 :
Go to Start � Programs � ATMEL AVR Tools
� AVR Studio 3.52

Select NewSelect New
ProjectProject

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 26

Getting Started with STUDIO 3.52 :Getting Started with STUDIO 3.52 :
You should be getting now the window:

This is your code This is your code
directorydirectory

Pick a name for your Pick a name for your
projectproject

Pick AVR AssemblerPick AVR Assembler

At theAt the
endend

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 27

Entering files in STUDIO3.52 (I):Entering files in STUDIO3.52 (I):

(2) Click here(2) Click here
To add files in the To add files in the

assembler areaassembler area

(1) Click here to go (1) Click here to go
to the assembler to the assembler

files areafiles area

(3) Click to pick (3) Click to pick
you assembly fileyou assembly file

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 28

Entering files in STUDIO3.52 (II):Entering files in STUDIO3.52 (II):

(2) Click hear(2) Click hear
to add files in the to add files in the
‘other files’ area‘other files’ area

(1) Click here to go (1) Click here to go
to the ‘other files’ to the ‘other files’

areaarea (3) Click here to go (3) Click here to go
to the ‘other files’ to the ‘other files’

areaarea

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 29

Entering files in STUDIO3.52 (III):Entering files in STUDIO3.52 (III):

This is your This is your
definitions file definitions file

loaded in Studioloaded in Studio

This is your code This is your code
loaded in Studioloaded in Studio

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 30

Select the output file format :Select the output file format :

Select Intel HEX
format

Click on Project Click on Project
SettingsSettings

Change the format Change the format
of the output fileof the output file

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 31

Running your Program in Studio :Running your Program in Studio :

Build and Build and
RunRun

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 32

Processor Settings:Processor Settings:

ATmega103,
Program memory 131072 (128 Kbytes)
Frequency = 4 MHz

ATmega103ATmega103

Program FlashProgram Flash

FrequencyFrequency

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 33

Processor Settings:Processor Settings:

ATmega103ATmega103Program Program
FlashFlash

FrequencyFrequency

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 34

Ready to Run :Ready to Run :

Your CodeYour Code

Your Project Your Project
FilesFiles

Assembler Assembler
ResultsResults

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 35

Open monitoring Windows:Open monitoring Windows:

InPutInPut
OutPutOutPut

To run: Auto StepTo run: Auto Step

CPUCPU

RegistersRegisters

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 36

Watch your Program Running:Watch your Program Running:

InPutInPut
OutPutOutPut

CPUCPU

RegistersRegisters

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 37

Exercising the ATmega103 commandsExercising the ATmega103 commands::

Look at the processor assembly commands in the
Web page and try writing other programs.

Try the commands SER, CLR, MOV, ADD, INC, LSL,…
and see what do they do……

Write some programs that use these commands and
Output the results on PORTB so you can see them on
Using the POTRB LEDs when you eventually down
load for real to the ATmega103.

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 38

Downloading with Downloading with PonyprogPonyprog I:I:

Select from Start : ponyprog2000
Open input Flash File

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 39

Downloading with Downloading with PonyprogPonyprog II:II:

Select from *.hex and LEDIO

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 40

Downloading with Downloading with PonyprogPonyprog III:III:

This is your machine code to be
downloaded to the ATmega103 chip

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 41

Downloading with Downloading with PonyprogPonyprog IV:IV:
Select your Processor again

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 42

Downloading with Downloading with ponyprogponyprog V:V:

In ponyprog2000: (1) Setup (Parallel, AVR I/O, LP1)
(2) Calibrate
(3) Select AVR family and ATmega103
(4) Load your flash file LEDIO.hex
(5) Erase the Flash memory
(6) Write the flash memory

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 43

Programs to write I:Programs to write I:

(1) Download from the Web Page the program
LEDIO.asm, assemble it and run it. What do you
see if you press the buttons on PORTD ?? Do you
know why this happens (dark LED → 1) ???

(2) Write a program that adds 2 numbers and
outputs the result at PORTB. Read the result
using the LEDs.

2/20/2004 Costas Foudas, Imperial College,
Rm: 508, x47590 44

Programs to write II:Programs to write II:

(3) Make a counter from 0 – FF and look with your scope
probe at the LSB. How long does it take to make an
addition ?? Why does the D0 bit toggle with a
frequency that is twice that of D1 ?
(use two scope probes one on D0 and another on D1)

(4) In the documentation you will find how many clock
counts are required to perform an instruction in your
program. Given that the ATmega103 has a 4 MHz
clock you can predict the time it takes to do an
addition. Does it agree with what you measure using
the scope probes ?

