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1. The free Lagrangian density for the two massless fermions is

L = iψνγ
µ(∂µψν) + iψeγ

µ(∂µψe)

= i
(

ψν ψe

)

γµ∂µ

(

ψν

ψe

)

= iΨγµ(∂µΨ)

For a special unitary transformation

Ψ′ = UΨ

where
U = e−iαiσi/2

then, since U is unitary, meaning U †U = I, and U 6= U(xµ)

L′ = iΨ
′
γµ(∂µΨ

′)

= iΨU †γµ(∂µUΨ)

= iΨγµ(∂µΨ) = L

Hence, the Lagrangian density is invariant to tranformations under U . Using

∂Ψ

∂αi
= − i

2
σiΨ,

∂Ψ

∂αi
=
i

2
Ψσi

and
∂L

∂(∂µΨ)
= iΨγµ,

∂L
∂(∂µΨ)

= 0

then the Nöther currents associated with these transformations are

Jµ
V i = (iΨγµ)(− i

2
σiΨ) + (

i

2
Ψσi)(0) =

1

2
ΨγµσiΨ

In terms of ψν and ψe, these are therefore

Jµ
V 1 =

1

2

(

ψνγ
µψe + ψeγ

µψν

)

Jµ
V 2 =

i

2

(

ψeγ
µψν − ψνγ

µψe

)

Jµ
V 3 =

1

2

(

ψνγ
µψν − ψeγ

µψe

)

The corresponding axial currents are

Jµ
A1 =

1

2

(

ψνγ
µγ5ψe + ψeγ

µγ5ψν

)

Jµ
A2 =

i

2

(

ψeγ
µγ5ψν − ψνγ

µγ5ψe

)

Jµ
A3 =

1

2

(

ψνγ
µγ5ψν − ψeγ

µγ5ψe

)
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and hence we can form the combinations

Jµ
i =

1

2
(Jµ

V i − J
µ
Ai)

which are also conserved. Under local gauge invariance, these currents can couple to fields
Wµ

i . The charged interaction term for the currents Jµ
1 and Jµ

2 is

LC = gWW1µJ
µ
1 + gWW2µJ

µ
2

=
gW
2
W1µ

[

ψνγ
µ 1

2
(1− γ5)ψe + ψeγ

µ 1

2
(1− γ5)ψν

]

+

gW
2
W2µi

[

ψeγ
µ 1

2
(1− γ5)ψν − ψνγ

µ 1

2
(1− γ5)ψe

]

=
gW
2

[

(W1µ − iW2µ)ψνγ
µ 1

2
(1− γ5)ψe + (W1µ + iW2µ)ψeγ

µ 1

2
(1− γ5)ψν

]

=
gW
2

(√
2W−

µ ψνγ
µ 1

2
(1− γ5)ψe +

√
2W+

µ ψeγ
µ 1

2
(1− γ5)ψν

)

=
gW√
2

[

W−
µ ψνγ

µ 1

2
(1− γ5)ψe +W+

µ ψeγ
µ 1

2
(1− γ5)ψν

]

=
gW√
2

[

W−
µ ψνLγ

µψeL +W+
µ ψeLγ

µψνL

]

as is observed.

The current which interacts with the Y µ field is generally

Jµ
Y = aψνLγ

µψνL + bψνRγ
µψνR + cψeLγ

µψeL + dψeRγ
µψeR

The total neutral interaction term is then

LN = gWW3µJ
µ
3 +

gY
2
YµJ

µ
Y

In terms of the left- and right-handed terms, this is

LN =
gW
2
W3µψνLγ

µψνL −
gW
2
W3µψeLγ

µψeL + a
gY
2
YµψνLγ

µψνL

+ b
gY
2
YµψνRγ

µψνR + c
gY
2
YµψeLγ

µψeL + d
gY
2
YµψeRγ

µψeR

Rotating the W µ
3 and Y µ fields into each other, then

Zµ =W µ
3 cos θW − Y µ sin θW , Aµ =W µ

3 sin θW + Y µ cos θW

which can be inverted to give

Wµ
3 = Zµ cos θW +Aµ sin θW , Y µ = −Zµ sin θW +Aµ cos θW

Therefore

LN =
gW
2

(Zµ cos θW +Aµ sin θW )ψνLγ
µψνL −

gW
2

(Zµ cos θW +Aµ sin θW )ψeLγ
µψeL

+ a
gY
2

(−Zµ sin θW +Aµ cos θW )ψνLγ
µψνL + b

gY
2

(−Zµ sin θW +Aµ cos θW )ψνRγ
µψνR

+ c
gY
2

(−Zµ sin θW +Aµ cos θW )ψeLγ
µψeL + d

gY
2

(−Zµ sin θW +Aµ cos θW )ψeRγ
µψeR
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which can be expressed as

LN = Aµ
1

2
(gW sin θW + agY cos θW )ψνLγ

µψνL + bAµ
1

2
gY cos θWψνRγ

µψνR

+ Aµ
1

2
(−gW sin θW + cgY cos θW )ψeLγ

µψeL + dAµ
1

2
gY cos θWψeRγ

µψeR

+ Zµ
1

2
(gW cos θW − agY sin θW )ψνLγ

µψνL − bZµ
1

2
gY sin θWψνRγ

µψνR

+ Zµ
1

2
(−gW cos θW − cgY sin θW )ψeLγ

µψeL − dZµ
1

2
gY sin θWψeRγ

µψeR

The neutrino couplings to the photon have to be zero for both the left- and right-handed
parts, so

gW sin θW + agY cos θW = 0, b = 0

The electron terms must be equal to the QED coupling

−eAµψeγ
µψe = −eAµψeγ

µ 1

2
(1− γ5 + 1 + γ5)ψe = −eAµ

(

ψeLγ
µψeL + ψeRγ

µψeR

)

so
1

2
(−gW sin θW + cgY cos θW ) = −e, 1

2
dgY cos θW = −e

All the above are satisfied by

gW sin θW = gY cos θW , e = gW sin θW

and
a = −1, b = 0, c = −1, d = −2

as can be verified by direct substitution.

The general term for the Z coupling to neutrinos is

gZ
2
Zµ

[

cνLψνLγ
µψνL + cνRψνRγ

µψνR

]

Since b = 0, the Z coupling to the neutrino is purely left-handed and the term is

gZ
2
ZµcLψνLγ

µψνL = Zµ (gW cos θW + gY sin θW )
1

2
ψνLγ

µψνL

= Zµ

(

gW cos θW +
gW sin θW
cos θW

sin θW

)

1

2
ψνLγ

µψνL

= Zµ

(

gW
cos θW

)

(

cos2 θW + sin2 θW
) 1

2
ψνLγ

µψνL

=
1

2

(

gW
cos θW

)

ZµψνLγ
µψνL

and so has a strength gZ = gW / cos θW and couplings

cνL = 1, cνR = 0

Using cV = (cL + cR)/2 and cA = (cL − cR)/2, these are

cνV =
1

2
, cνA =

1

2
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The Z coupling terms to the electron are both left- and right-handed

Zµ (−gW cos θW + gY sin θW )
1

2
ψeLγ

µψeL + ZµgY sin θWψeRγ
µψeR

= Zµ

(

−gW cos θW +
gW sin θW
cos θW

sin θW

)

1

2
ψeLγ

µψeL + Zµ
gW sin θW
cos θW

sin θWψeRγ
µψeR

=
1

2

(

gW
cos θW

)

Zµ

[(

− cos2 θW + sin2 θW
)

ψeLγ
µψeL + 2 sin2 θWψeRγ

µψeR

]

=
1

2

(

gW
cos θW

)

Zµ

[(

−1 + 2 sin2 θW
)

ψeLγ
µψeL + 2 sin2 θWψeRγ

µψeR

]

Hence, the overall strength gZ is the same and the couplings are

ceL = −1 + 2 sin2 θW , ceR = 2 sin2 θW

so that

ceV = −1

2
+ 2 sin2 θW , ceA = −1

2

2. The general formula for the partial width is

Γ =
|M |2ρ
2MZ

with the phase space for the two-body decay, which is independent of solid angle, being

ρ =
1

8π

Since the matrix element for the Z to decay to ff is given as

〈|M |2〉 = g2
WM

2
Z

3 cos2 θW

(

c2fV + c2fA

)

the partial width is

Γ(Z → ff) =
g2
WM

2
Z

3 cos2 θW

(

c2fV + c2fA

) 1

8π

1

2MZ
=

g2
WMZ

48π cos2 θW

(

c2fV + c2fA

)

Using

cos θW =
MW

MZ

then the partial width becomes

Γ(Z → ff) =
g2
WM

3
Z

48πM2
W

(

c2fV + c2fA

)

=
g2
W

8M2
W

M3
Z

6π

(

c2fV + c2fA

)

=
GF√
2

M3
Z

6π

(

c2fV + c2fA

)

For any neutrino, cνV = 0.5 and cνA = 0.5 so the partial width is

Γ(Z → νeνe) = 0.166 GeV

This is the same for the muon and tau neutrinos also.

The mass of the Z is less than twice the top mass so the allowed decays of the Z are to
all the charged leptons and neutrinos, Z → l+l− and Z → νlνl, and all the quarks except
the top, Z → qq. The charged leptons have ceV = −0.037 and ceA = −0.5 so the partial
width is

Γ(Z → e+e−) = 0.083 GeV
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and again is the same for the muon and tau also.

The u and c quarks have cuV = 0.192 and cuA = 0.5 so for one colour

Γ(Z → uu) = 0.095 GeV

For d, s and b, cdV = −0.346 and cdA = −0.5, so

Γ(Z → dd) = 0.123 GeV

The Z width to hadrons for all three colours is therefore

Γ(Z → hadrons) = 6Γ(Z → uu) + 9Γ(Z → dd) = 1.677 GeV

The visible partial width is thus

Γvisible = 3Γ(Z → e+e−) + Γ(Z → hadrons) = 1.926 GeV

The invisible width can be determined from the measured visible and total widths i.e.

Γinvisible = ΓZ − Γvisible

Above technique was used to constrain the number of light neutrinos and hence the number
of generations.

The total width is

ΓZ = 3Γ(Z → νeνe) + 3Γ(Z → e+e−) + Γ(Z → hadrons) = 2.424 GeV

which corresponds to a lifetime of 2.7× 10−25 s. The leptonic branching fractions are each

B(Z → νeνe) =
Γ(Z → νeνe)

ΓZ
= 6.8%, B(Z → e+e−) =

Γ(Z → e+e−)

ΓZ
= 3.4%

and the branching fraction to hadrons is

B(Z → hadrons) =
Γ(Z → hadrons)

ΓZ
= 69.1%

The fractions of hadronic events containing c and b quarks are

Rc =
3Γ(Z → cc)

Γ(Z → hadrons)
= 17.0%, Rb =

3Γ(Z → bb)

Γ(Z → hadrons)
= 22.0%,

The total width and branching fraction to hadrons are very similar to those for W± decay
as might be expected from SU(2) symmetry, although the detailed quark production rates,
particularly for b quarks, are very different.

3. (i) The coupling of the Higgs to a fermion is proportional to the fermion mass. Hence,
the amplitude for a process involving this will go as the mass, while the rate goes as
the square of the mass.

(ii) Principal production mode for the Higgs at LEP2 is e+e− → Z0∗ → Z0H and so
Feynman diagram is as overleaf.

For a given centre of mass energy, Ecm, then the Higgs mass must bemH < Ecm−MZ ,
which for E = 209 GeV means mH < 118 GeV.
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+e

-e

*Z

0H

Z

From energy and momentum conservation in the centre of mass

Ecm = EH + EZ pH = pZ

Squaring the second of these

E2
H −m2

H = E2
Z −m2

Z

so
m2

H −m2
Z = E2

H − E2
Z = (EH + EZ)(EH − EZ) = Ecm(EH − EZ)

Hence

EH − EZ =
m2

H −m2
Z

Ecm

Adding this to the energy conservation equation gives

2EH = Ecm +
m2

H −m2
Z

Ecm

so

EH =
E2

cm +m2
H −m2

Z

2Ecm

For mH = 115 GeV, EH = 116.3 GeV.

At the kinematic limit, the Higgs and Z0 would be produced at rest and so have zero
phase space and so zero cross-section. Even at 115 GeV, the energy is only slightly
greater than the mass and so the phase space is small. The highest limit possible at
LEP2 would be somewhat below the kinematic value, at about 115GeV.

(iii) A Higgs of 115 GeV can decay into any quark-antiquark pair, except for tt, or any
lepton-antilepton pair. It is too light to decay to Z0Z0 or W+W−. Hence, since the
rate to any pair is proportional to m2 and neglecting any differences in the phase
space since mH À 2mf , then the branching ratio to a fermion pair ff is

B(ff) =
m2

f
∑

f m
2
f

where each of the quarks must be included three times in the sum to account for
colour. The main decay mode is clearly the one to the heaviest particle, which is the
b quark, so the dominant decay is H → bb. With

∑

f

m2
f = 62.1 GeV2
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then

B(bb) = 3m2
b

∑

f m
2
f

= 0.852

Answer for experimental identification should include

– Higgs is predominantly decaying to b-quarks, so need to identify these to separate
from backgrounds involving light quarks.

– B-quarks have non negligible lifetime, so can travel far enough to be identified
via tracks with a large impact parameter or a secondary vertex.

– Reconstruct the Higgs mass from the jet masses.

– Can use the Z decay products to help reject backgrounds, in particular two
electrons / muons or missing energy totalling the Z mass.

(iv) A Higgs of 250GeV will predominantly decay to W or Z pairs. Thus easiest way to
identify these will be through their leptonic decay modes, particularly at the hadron
colliders. ZZ decay to four muons is the gold-plated discovery channel for a higgs of
this mass at LHC.

4. (i) The Feynman diagram for e−µ− → e−µ− scattering is

-e

-µ

e

e

γ

-µ

-e

There are two vertices in the diagram, each with a power of e, so the amplitude is
proportional to e2 and hence the cross section to e4 or α2, as given.

(ii) Since the reaction is elastic, the electron energy E does not change. By scattering
through an angle θ, then the momentum changes by p(1 − cos θ) along the initial
electron direction and p sin θ perpendicular to it. Hence, the change in the four-
momentum is

q2 = −p2 sin2 θ − p2(1− cos θ)2

= −p2 sin2 θ − p2 − p2 cos2 θ + 2p2 cos θ = −2p2(1− cos θ)

In the centre-of-mass, the muon momentum is also p and, neglecting masses, then
the square of the centre-of-mass energy s = 4p2, so

q2 = −1

2
s(1− cos θ)

Hence
d

d(q2)
=

2

s

d

d(cos θ)

Also, using cos θ = 1− 2 sin2(θ/2), then

q2 = −s sin2(θ/2)
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or

sin2(θ/2) = −q
2

s

so that

cos2(θ/2) = 1− sin2(θ/2) = 1 +
q2

s

Therefore the cross section becomes

dσ

d(q2)
=

2

s

dσ

d(cos θ)
=

2

s

πα2

s

1 +
[

1 + (q2/s)
]2

(q4/s2)

=
2πα2

q4

[

1 + 1 + 2
q2

s
+
q4

s2

]

=
2πα2

q4

[

q4

s2
+ 2

(

1 +
q2

s

)]

(iii) For a quark with momentum fraction x, then in the ep centre-of-mass, the total eq
energy and momentum are

Eeq = p+ xp = (1 + x)p, Peq = p− xp = (1− x)p

so the eq centre-of-mass energy is

ŝ = E2
eq − P 2

eq = (1 + x)2p2 − (1− x)2p2

= (1 + 2x+ x2 − 1 + 2x− x2)p2 = 4xp2 = xs

(iv) The cross section for scattering from quark type i with fractional momentum x is

dσ

d(q2)
=

2πα2

q4

(

ei
e

)2
[

q4

ŝ2
+ 2

(

1 +
q2

ŝ

)]

=
2πα2

q4

(

ei
e

)2
[

q4

x2s2
+ 2

(

1 +
q2

xs

)]

so the total cross section is

dσ

d(q2)
=

2πα2

q4

∑

i

(

ei
e

)2

pi(x)

[

q4

x2s2
+ 2

(

1 +
q2

xs

)]

dx

or
dσ

dx d(q2)
=

2πα2

q4

∑

i

(

ei
e

)2

pi(x)

[

q4

x2s2
+ 2

(

1 +
q2

xs

)]

Comparing with the conventional expression for the cross section, then

F1(x, q
2) =

∑

i

(

ei
e

)2

pi(x),
F2(x, q

2)

x
= 2

∑

i

(

ei
e

)2

pi(x)

Hence, the quark model predicts the structure functions are related by

F2(x, q
2) = 2xF1(x, q

2)

5. (a) The oscillations are due to a “beat” effect of having different frequencies. With all
neutrinos having zero mass, all the phases would remain equal at all times.
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(b) Solving the two equations for νµ and ντ , then

νµ cos θ = ν1 cos
2 θ − ν2 sin θ cos θ, ντ sin θ = ν1 sin

2 θ + ν2 sin θ cos θ

so
ν1 = νµ cos θ + ντ sin θ

Similarly

νµ sin θ = ν1 sin θ cos θ − ν2 sin
2 θ, ντ cos θ = ν1 sin θ cos θ + ν2 cos

2 θ

so
ν2 = −νµ sin θ + ντ cos θ

An initially pure muon neutrino beam at time t = 0 is in a state

ψ(0) = νµ = ν1 cos θ − ν2 sin θ

Each of the states νi change with time according to the standard quantum mechanical
time dependence e−Eit, so at a later time t, the state is

ψ(t) = ν1e
−E1t cos θ − ν2e

−E2t sin θ

Substituting for ν1 and ν2, then this is

ψ(t) = (νµ cos θ + ντ sin θ)e
−E1t cos θ − (−νµ sin θ + ντ cos θ)e

−E2t sin θ

= νµ(e
−E1t cos2 θ + e−E2t sin2 θ) + ντ (e

−E1t sin θ cos θ − e−E2t sin θ cos θ)

so the amplitude for muon neutrinos is

Aµ = e−iE1t cos2 θ + e−iE2t sin2 θ

and for tau neutrinos is

Aτ = cos θ sin θ
(

e−iE2t − e−iE1t
)

(c) Writing

E2 =
E2 + E1

2
+
E2 − E1

2
, E1 =

E2 + E1

2
− E2 − E1

2

then the amplitude for having a tau neutrino in the beam is

Aτ = cos θ sin θ
[

e−i(E2+E1)t/2e−i(E2−E1)t/2 − e−i(E2+E1)t/2ei(E2−E1)t/2
]

=
1

2
sin 2θe−i(E2+E1)t/2

[

e−i(E2−E1)t/2 − ei(E2−E1)t/2
]

= −i1
2
sin 2θe−i(E2+E1)t/2 sin [(E2 − E1)t/2]

Hence, the probability of having a tau neutrino is

Pτ = |Aτ |2 = sin2 2θ sin2
[

(E2 − E1)t

2

]

The general equation for the energy and momentum is

E =
√

p2 +m2 =
(

p2 +m2
)1/2
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If E is much greater than m, then so is p, so approximating the square root by a
binomial expansion gives

E = p

(

1 +
m2

p2

)1/2

≈ p
(

1 +
1

2

m2

p2

)

= p+
m2

2p

Hence E ≈ p and

E2 − E1 ≈
m2

2 −m2
1

2p
=

∆(m2)

2p
≈ ∆(m2)

2E

The distance gone is l = βt, but as the energy is much greater than the mass, then
the velocity is effectively β = 1, so

Pτ ≈ sin2 2θ sin2

[

∆(m2)l

4E

]2

(d) The cosmic rays interact strongly in the atmosphere and so produce many pions. Of
these, the charged pions then mostly decay to a muon and a muon neutrino

π− → µ−νµ

and its charge conjugate. The muons themselves subsequently decay to an electron,
an electron neutrino and another muon neutrino

µ− → e−νeνµ

and its charge conjugate. Hence, every charged pion results in two muon neutrinos
and one electron neutrino.

Under the hypothesis of maximal mixing, the muon neutrinos have mixed to (unde-
tected) tau neutrinos and so the ratio of muon to electron neutrinos can be less than
two. The probability of a muon neutrino remaining in the beam is Pµ = 1−Pτ = R/2,
where R is the muon to electron neutrino ratio. For neutrinos coming vertically down-
wards, the limit on Pτ is therefore given by

Pτ < 1− 0.5R = 0.1

For maximal mixing, sin2 2θ = 1, so

sin2

[

∆(m2)l

4E

]

< 0.1

or
∆(m2)l

4E
< 0.32 rad

Hence, with E = 0.5 GeV and l the thickness of the atmosphere = 20 km or 1.01×1020

GeV−1, then
∆(m2) < 6× 10−21 GeV2 = 6× 10−3 eV2

For neutrinos coming vertically upwards, then the sin2 term must be averaging to 0.5
as the ratio is independent of the angle (and hence path length) and energy. Hence,

∆(m2)l

4E
À 2π rad

so with l the diameter of the Earth = 12800 km or 6.5× 1022 GeV−1, then

∆(m2)À 2× 10−22 GeV2 = 2× 10−4 eV2

These set the limits on ∆(m2).
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