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1. The free Lagrangian density for the two massless fermions is
L = i@ﬂ“(&ﬂ/@) + @ev“(awe)
= i( % ¥ )7“(%(:2:)
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For a special unitary transformation
V' =Uw

where
U — efl'al‘O'i/Q

then, since U is unitary, meaning U'U = I, and U # U(xH)
L= iUy,
= WU(0,UD)
= iU (9,0) =L

Hence, the Lagrangian density is invariant to tranformations under U. Using
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In terms of vy, and ., these are therefore
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The corresponding axial currents are
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and hence we can form the combinations
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which are also conserved. Under local gauge invariance, these currents can couple to fields
W}'. The charged interaction term for the currents J{" and J% is
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as is observed.

The current which interacts with the Y* field is generally
Iy = at,  ur + 0Py Y UuR + PV er + A gy iber
The total neutral interaction term is then
Ly = gwWs,Jb + %Yujg
In terms of the left- and right-handed terms, this is

Ly = Ws,ﬂ/JyL’Y VoL, — —WSH%L’Y Yer +a Vb, v dur
+ ng Vb, ry" v + Al uweL’Y er, + A2 YM¢6R7 Yer

Rotating the W{" and Y* fields into each other, then

ZF = W cos Oy — Y sin Oy, AP = W sin Oy + Y cos Oy
which can be inverted to give

Wi = ZF cos Oy + A¥ sin Oy, YH = —ZFsin Oy + A¥ cos Oy
Therefore
Ly = %}V (Z,, cos Ow + A, sinOw ) ¥, ;v by, — gTW (Z,, cos Oy + A, sin Oy ) Yoy ver

+ a‘%/ (—=Zusinbw + A, cos Oy ) by oL + b%/ (—=ZusinOw + A, cos Oy ) U, rY* R

+ cg?Y (—=ZusinOw + A, cos Oy ) @eLV“WzL + d‘q?Y (—=Zusinby + A, cos Oy ) @ERW“Q/)QR



which can be expressed as
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The neutrino couplings to the photon have to be zero for both the left- and right-handed
parts, so
gw sin Oy + agy cos Oy = 0, b=0

The electron terms must be equal to the QED coupling
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All the above are satisfied by

aw sin ‘9W = gy COS Qw, € =agw sin 0W
and

a=—1, b=0, c=—1, d= -2
as can be verified by direct substitution.

The general term for the Z coupling to neutrinos is
92 - -
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Since b = 0, the Z coupling to the neutrino is purely left-handed and the term is
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and so has a strength gz = gy / cos @y and couplings
cyr =1, cyr =0

Using ¢y = (cr, + cr)/2 and ca = (¢, — cr)/2, these are
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The Z coupling terms to the electron are both left- and right-handed
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Hence, the overall strength g is the same and the couplings are

Cer, = —1 + 2sin? Oy, Cer = 2sin? Oy
so that
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. The general formula for the partial width is
r_ IMPp
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with the phase space for the two-body decay, which is independent of solid angle, being
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Since the matrix element for the Z to decay to ff is given as
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the partial width is
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For any neutrino, ¢,y = 0.5 and ¢, 4 = 0.5 so the partial width is
I'Z — veve) = 0.166 GeV

This is the same for the muon and tau neutrinos also.

The mass of the Z is less than twice the top mass so the allowed decays of the Z are to
all the charged leptons and neutrinos, Z — (71~ and Z — v;7;, and all the quarks except
the top, Z — qq. The charged leptons have c.,y = —0.037 and c.4 = —0.5 so the partial
width is

I'(Z —eTe”) =0.083 GeV



3.

and again is the same for the muon and tau also.

The v and ¢ quarks have ¢,y = 0.192 and cy4 = 0.5 so for one colour
I'(Z — uu) = 0.095 GeV

For d, s and b, cqy = —0.346 and cg4 = —0.5, so
['(Z — dd) = 0.123 GeV

The Z width to hadrons for all three colours is therefore

I'(Z — hadrons) = 6['(Z — un) + 91(Z — dd) = 1.677 GeV

The visible partial width is thus

Tyisibe = 3T(Z — eTe™) + T'(Z — hadrons) = 1.926 GeV

The invisible width can be determined from the measured visible and total widths i.e.
Finvisible - I‘Z - Fvisible

Above technique was used to constrain the number of light neutrinos and hence the number
of generations.

The total width is
Iz =301(Z — veVe) + 31(Z — ete™) + I'(Z — hadrons) = 2.424 GeV
which corresponds to a lifetime of 2.7 x 1072° s. The leptonic branching fractions are each

['(Z — vev,) [(Z—ete)

B(Z — vrw,) = ———— =6.8%, B(Z—ete )= "2 =34%
FZ I‘Z
and the branching fraction to hadrons is
I'(Z — had
B(Z — hadrons) = (Z — hadrons) =69.1%
L'z
The fractions of hadronic events containing ¢ and b quarks are
31(Z — ce 30(Z — bb
R, = (2=  _yr0%. R = (Z=85) 99 0%,

I'(Z — hadrons) I'(Z — hadrons)

The total width and branching fraction to hadrons are very similar to those for W+ decay
as might be expected from SU(2) symmetry, although the detailed quark production rates,
particularly for b quarks, are very different.

(i) The coupling of the Higgs to a fermion is proportional to the fermion mass. Hence,
the amplitude for a process involving this will go as the mass, while the rate goes as
the square of the mass.

(ii) Principal production mode for the Higgs at LEP2 is ete™ — Z% — ZYH and so
Feynman diagram is as overleaf.

For a given centre of mass energy, E.,,, then the Higgs mass must be myg < E.,,— Mz,
which for F = 209 GeV means my < 118 GeV.



(iii)

e+

From energy and momentum conservation in the centre of mass
Een=En+Ez  pu=pz
Squaring the second of these

2 2 2 2
Ef —my=FE7; —my

SO
my; —my = B} — E} = (Ey + Ez)(Ey — Ez) = Eep(Ey — Ez)
Hence
By — By = =7
H Z Ecm

Adding this to the energy conservation equation gives
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For myg = 115 GeV, Fg = 116.3 GeV.

At the kinematic limit, the Higgs and Z° would be produced at rest and so have zero
phase space and so zero cross-section. Even at 115 GeV, the energy is only slightly
greater than the mass and so the phase space is small. The highest limit possible at
LEP2 would be somewhat below the kinematic value, at about 115GeV.

A Higgs of 115 GeV can decay into any quark-antiquark pair, except for tf, or any
lepton-antilepton pair. It is too light to decay to Z°Z% or W+ W ~. Hence, since the
rate to any pair is proportional to m? and neglecting any differences in the phase
space since mpyg > 2my, then the branching ratio to a fermion pair ffis

2
my

B(ff)zw

where each of the quarks must be included three times in the sum to account for
colour. The main decay mode is clearly the one to the heaviest particle, which is the
b quark, so the dominant decay is H — bb. With

> m} =621 GeV?
7



then
- 3m§

B(bb) = AT

Answer for experimental identification should include

= 0.852

— Higgs is predominantly decaying to b-quarks, so need to identify these to separate
from backgrounds involving light quarks.

— B-quarks have non negligible lifetime, so can travel far enough to be identified
via tracks with a large impact parameter or a secondary vertex.

— Reconstruct the Higgs mass from the jet masses.

— Can use the Z decay products to help reject backgrounds, in particular two
electrons / muons or missing energy totalling the Z mass.

(iv) A Higgs of 250GeV will predominantly decay to W or Z pairs. Thus easiest way to
identify these will be through their leptonic decay modes, particularly at the hadron
colliders. ZZ decay to four muons is the gold-plated discovery channel for a higgs of
this mass at LHC.

4. (i) The Feynman diagram for e~ p~ — e~ u~ scattering is

u u

There are two vertices in the diagram, each with a power of e, so the amplitude is
proportional to e? and hence the cross section to e* or o?, as given.

(ii) Since the reaction is elastic, the electron energy F does not change. By scattering
through an angle 6, then the momentum changes by p(1 — cosf) along the initial
electron direction and psinf perpendicular to it. Hence, the change in the four-
momentum is

¢ = —p?sin®0 — p*(1 — cosh)?
= —p?sin?0 — p? — p?cos? 0 + 2p? cos O = —2p2(1 — cosf)
In the centre-of-mass, the muon momentum is also p and, neglecting masses, then
the square of the centre-of-mass energy s = 4p?, so

1
¢ = —53(1 —cosf)

Hence

d 2 d

d(q?)  sd(cos®)
Also, using cosf = 1 — 2sin?(#/2), then

¢* = —ssin®(0/2)



(iii)

or
2

sin?(0/2) = _%

so that
2

cos?(0/2) =1 —sin?(0/2) = 1 + %

Therefore the cross section becomes

do 2 do _gwa21—|—[1+(q2/s)]2
d(¢?)  sd(cosf) s s (q*/s?)
e 2 4
- [1+1+2q—+q—2
q s s
ora? [t 2
- [q—2+2<1+q—>
@ |s s

For a quark with momentum fraction z, then in the ep centre-of-mass, the total eq
energy and momentum are

Eequ—i—xp:(l—l—x)p, Peq:p_xp:(l_x)p
so the eq centre-of-mass energy is
5§ = qu — Pfq =(1+ :c)2p2 - (1- x)2p2
= 142z +2% - 142z —2?)p* = dap® = a5

The cross section for scattering from quark type ¢ with fractional momentum x is

do :27ra2(ﬁ>2 Y s :zwoﬂ(@)? DY PR
d(q?) qt e 52 3 qt e 2252 s
so the total cross section is

do 2’ e\ 2 ¢ q>
iD - 4 Z (E) pi(x) [—x232 +21+ g dx

)

do 2 ei\? 7 7>
drd(q?) ¢ Z <;> pi(@) [3:232 r2{r zs

)

or

Comparing with the conventional expression for the cross section, then

Al =5 (%) nn. BEE 25 (4)

, x
7
Hence, the quark model predicts the structure functions are related by

F2(x7q2) = 2$F1(£U, q2)

The oscillations are due to a “beat” effect of having different frequencies. With all
neutrinos having zero mass, all the phases would remain equal at all times.



(b) Solving the two equations for v, and v, then

v, cost =11 cos? 0 — vy sin 6 cos 0, vy sin@ = vy sin? 0 + v, sin 6 cos 6
SO
v1 = v, cos + v, sind
Similarly
v, sin@ = vy sinf cos 0 — v sin? 0, vy cosf = vy sin 0 cos O + vy cos? 0
SO
vy = —v,sinf + vy cos 0

An initially pure muon neutrino beam at time ¢ = 0 is in a state
Y(0) = v, = v1cosf — vasinf

Each of the states v; change with time according to the standard quantum mechanical
time dependence e P, so at a later time ¢, the state is

Y(t) = vie Pl cos ) — vpe P2t sin g
Substituting for 11 and 1o, then this is

Y(t) = (Vucosh+vrsind)e P cosf — (v, sinf + v, cosf)e 2 sin 6

= vu(e B cos? 0 4+ e P2 sin? 0) 4 v (e F 1 sin @ cos @ — e P2 sin 6 cos 0)
so the amplitude for muon neutrinos is
A, = e it cog? 0 + e 2l gin? 9
and for tau neutrinos is

A, =cosfsinf (e*’EQt — e*’Elt)

(c) Writing

_E2+E1+E2—E1 E_E2+E1 Ey — 4
T2 2 T 2

then the amplitude for having a tau neutrino in the beam is

i)

A, = cosfsind {e*i(E2+E1)t/2€*i(E2*E1)t/2 _ o~ B2+ ENt/2 ji(Ey—Eq)t/2

= %sin 20~ H(E2tE1)t/2 [e_i(ETEl)t/? _ ei(EQ_El)t/2:|
- _Z% sin 20~ 72 EI2 gin [(Eq — E1)t/2]
Hence, the probability of having a tau neutrino is
P = |A;|* = sin® 260 sin® [@}

The general equation for the energy and momentum is

E=\/p?+m?= (p2 +m2)1/2

9



If E is much greater than m, then so is p, so approximating the square root by a
binomial expansion gives

E 1™ v 1y Lm Miia
=p - ~p —— | =p+ —
p? 2 p? 2p

Hence F =~ p and

2 .2 A 2 A 2
EQ—E1%m2 my _ (m)% (m?)
2p 2p 2F

The distance gone is [ = ft, but as the energy is much greater than the mass, then
the velocity is effectively 6 =1, so

2
A(m?)l
P, ~sin®20sin? | ——~
sin” 26 sin [ iE

The cosmic rays interact strongly in the atmosphere and so produce many pions. Of
these, the charged pions then mostly decay to a muon and a muon neutrino

L TN 7
and its charge conjugate. The muons themselves subsequently decay to an electron,
an electron neutrino and another muon neutrino

B e Doy,
and its charge conjugate. Hence, every charged pion results in two muon neutrinos

and one electron neutrino.

Under the hypothesis of maximal mixing, the muon neutrinos have mixed to (unde-
tected) tau neutrinos and so the ratio of muon to electron neutrinos can be less than
two. The probability of a muon neutrino remaining in the beam is P, = 1- P, = R/2,
where R is the muon to electron neutrino ratio. For neutrinos coming vertically down-
wards, the limit on P; is therefore given by

P.<1-05R=0.1

For maximal mixing, sin®26 = 1, so

. A(m?)l
2
N
sin [ ] <0

or
A(m?)I
4F
Hence, with £ = 0.5 GeV and [ the thickness of the atmosphere = 20 km or 1.01 x 10%°
GeV~!, then

< 0.32 rad

A(m?) <6 x 10721 GeVZ =6 x 1072 eV?

For neutrinos coming vertically upwards, then the sin? term must be averaging to 0.5
as the ratio is independent of the angle (and hence path length) and energy. Hence,

A(m?)l
4F
so with [ the diameter of the Earth = 12800 km or 6.5 x 10?2 GeV~!, then

A(m?) > 2x 10722 GeV? =2 x 107% eV?
These set the limits on A(m?).

> 27 rad
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