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1. This question looks at conservation laws in hadron decays.

Qualitatively explain the significance of the following observations;

• The partial widths for decays to photons; Γ(π0 → γγ) = 7.84 eV but Γ(π0 → γγγ)
has not been seen and has a limit of < 2×10−7 eV. Similarly, Γ(η → γγ) = 460 eV but
Γ(η → γγγ) has not been seen and has a limit of < 0.6 eV and also Γ(η ′ → γγ) = 4300
eV but Γ(η′ → γγγ) has not been seen and has a limit of < 20 eV.

• The partial widths for decays to electrons; Γ(π0 → e+e−) = 6× 10−7 eV but Γ(π0 →
e+e−e+e−) = 2×10−4 eV. However, Γ(ρ0 → e+e−) = 6.8 keV but Γ(ρ0 → e+e−e+e−)
has not been seen.

• The partial widths for decays to hadrons; Γ(η → π+π−π0) = 0.38 keV and Γ(η →
π0π0π0) = 0.27 keV but Γ(η → π+π−) has not been seen and has a limit of < 1.8
eV. Similarly, Γ(η′ → π0π0π0) = 0.31 keV but Γ(η′ → π+π−) has not been seen.
However, Γ(ρ0 → π+π−) = Γ(ρ± → π±π0) = 150 MeV, but neither Γ(ρ0 → π0π0) nor
Γ(ρ0 → ηπ0) have been seen whereas Γ(ρ0 → π0γ) = 120 keV and Γ(ρ0 → ηγ) = 57
keV.

2. This question shows in the general case of any operator with only two distinct eigenvalues,
projection operators can be formed.

Consider a operator Â which has several eigenstates ψi with eigenvalues λi, so

Âψi = λiψi

The eigenstates form a complete set, so that any state can in general be decomposed into
a sum of the eigenstates

Ψ =
∑

i

αiψi

for some coefficients αi. Show that applying the combination (λ1 − Â) to the general state
Ψ removes the eigenstate ψ1 from this sum. What happens to the coefficients of the other
eigenstates during this operation?

Now consider the case where Â has only two distinct eigenvalues. Show that the projection
operators

P̂1 =
λ2 − Â

λ2 − λ1

and

P̂2 =
λ1 − Â

λ1 − λ2

each remove one of the two eigenvectors from the general state Ψ and leave the coefficient
of the other eigenvector unchanged.

It is convenient to define a new operator from Â

B̂ =
2Â− (λ1 + λ2)

(λ1 − λ2)
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Show that B̂ has the same eigenstates as Â, but with eigenvalues of ±1, i.e. that

B̂ψ1 = ψ1, B̂ψ2 = −ψ2

By considering the general state

Ψ = α1ψ1 + α2ψ2

then show that B̂2 = 1, i.e.
B̂2Ψ = Ψ

Show that, in terms of B̂, the projection operators are

P1 =
1

2
(1 + B̂), P2 =

1

2
(1− B̂)

Hence, show that the P1,2 have the other required properties for projection operators,
namely

P 2
1 = P1, P 2

2 = P2, P1P2 = P2P1 = 0, P1 + P2 = 1

3. This question looks at the handedness operator and applies the projection operator results
from the previous question.

The handedness operator is γ5/2. Using the relation γ5γ5 = 1, show the eigenvalues of
handedness are ±1/2. Taking the handedness operator as Â in question 1 above, construct
the operator B̂ and hence find the projection operators P1 and P2.

Show the handedness operator does not commute with the Dirac Hamiltonian. Also, show
that the current ψγµγ5ψ is not conserved. Under what condition do both these results
change?

In the standard representation, the handedness operator is

1

2
γ5 =

1

2











0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0











Show that, for any values of a and b, the states











a
b
a
b











,











a
b

−a
−b











are eigenvectors of handedness and find their eigenvalues.

In the standard representation, the particle solutions of the Dirac equation with momenta
along the z axis and spin ±1/2 along the z axis are

u1 =
√
E +m











1
0

p/(E +m)
0











, u2 =
√
E +m











0
1
0

−p/(E +m)











These are clearly therefore eigenstates of helicity with eigenvalues ±1/2 respectively. In
which limit are they also eigenstates of handedness and what are their eigenvalues?
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In general, any state can be decomposed into right-handed (+1/2) and left-handed (−1/2)
eigenstates

Ψ = aψR + bψL

Write down the explicit form of the projection operators in the standard representation
and hence, explicitly find aψR and consequently |a|2(ψ†RψR) for Ψ = u1. With the ψR
normalisation set to be the same as for the ui, i.e. u

†
iui = 2E, then show

|a| =
√

1 + β

2

Similarly show

|b| =
√

1− β

2

4. This question works through the calculation of the W± decay widths and branching frac-
tions.

The spin-averaged matrix element of the decay W− → e−νe can be calculated from the
Feynman diagram to be

〈|M |2〉 = g2
WM

2
W

3

where the electron mass has been neglected. Show that the partial width for this mode is
therefore

Γ(W− → e−νe) =
GFM

3
W

6π
√
2

and evaluate this numerically.

List the possible decay modes for the W± to leptons or quarks and calculate the partial
widths for the other lepton decays and for decays to hadrons, neglecting all fermion masses
and higher-order QCD effects. Calculate the total width and hence lifetime of the W±

and find the leptonic and hadronic branching fractions. What fractions of the hadronic
decays contain charmed and bottom hadrons?

5. Exam question: 2003 question 2.

The charged pion, with spin zero and mass 139.6MeV, can decay to an electron, mass
0.511MeV, or a muon, mass 105.7MeV, through the decay

π− → l− + νl,

where l stands for e or µ. These decays have branching fractions of 1.23×10−4 and 0.99988
respectively. Any neutrino mass should be neglected in the following.

(i) Draw a Feynman diagram for this decay.

(ii) Fermi’s Golden Rule gives the partial width Γi for a particle of mass m to decay to
a mode i to be

Γi =
|Mi|2ρi
2m

,

where Mi is the matrix element and ρi the Lorentz invariant phase space. Briefly
explain the physical significance of the terms in this equation.
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(iii) The phase space available for the above pion decays is

ρl =
1

8π

m2
π −m2

l

m2
π

.

Evaluate the ratio of the magnitudes of the phase space factors for these two decays
and comment on your result.

(iv) The first-order matrix element for these decays is

|Ml|2 = 2G2
F f

2
πm

2
l (m

2
π −m2

l ).

whereGF is the Fermi constant and fπ is the pion form factor. Calculate an expression
for the ratio of the partial widths for these two decays. Evaluate this ratio and
comment on your result.

(v) A left-handed state of a fermion has components of both helicity ±1/2 states, with
amplitudes of

√

(1∓ β)/2 respectively, where β is the velocity of the particle. Assum-
ing the weak interactions couple only to left-handed particles (and hence right-handed
antiparticles), draw a diagram showing the lepton and antineutrino helicities in these
decays.

(vi) From the expression for the matrix element in part (iv) above, the decay rate becomes
zero as the lepton mass goes to zero. Explain this observation in terms of your
diagram and hence qualitatively explain why the electron decay is heavily suppressed
compared with the muon decay.

(vii) The charged kaon has a mass of 493.7MeV. The branching fraction for the equivalent
muon decay K− → µ−νµ is 0.6351. Briefly explain why this is lower than for the
pion case and estimate the branching fraction for the decay K− → e−νe.

6. CP violation in neutral kaons is dominated by indirect CP violation. This question shows
the results of this form of the effect. This is a long and complex question and is not

for rapid feedback.

The ds and sd quark states are written as K0 and K
0
respectively. These are antiparticles

of each other and so CP eigenstates can be constructed

K0
1 =

1√
2

(

K0 +K
0
)

, K0
2 =

1√
2

(

K0 −K
0
)

where
CP (K0

1 ) = K0
1 , CP (K0

2 ) = −K0
2

With indirect CP violation, the physical (mass) eigenstates do not correspond exactly to
the CP eigenstates but differ by a small amount ε

K0
S = N

(

K0
1 + εK

0
2

)

, K0
L = N

(

K0
2 + εK

0
1

)

where the normalisation factor is

N =
1

√

1 + |ε|2

(Note that because both of these equations contain +ε, the states K0
S and K

0
L are not

orthogonal; this is related to the fact that the Hamiltonian is not Hermitian.)

Express K0
S and K

0
L in terms of K

0 and K
0
and then invert the equations to express K0

and K
0
in terms of K0

S and K
0
L.
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The major decays of neutral kaons are semi-leptonic and hadronic. The semi-leptonic
decays are

K0 → l+ νl π
−, K

0 → l− νl π
+

which will have the same partial width in the absence of direct CP violation. The hadronic
decays are to two and three pions and in the absence of direct CP violation, these are only

K0
1 → 2π, K0

2 → 3π

but do not have the same partial width.

For a beam of initially pure K0 particles, find the time dependence of the semi-leptonic
rates and hence find a time dependent expression for the asymmetry

Al =
Rate(l+)− Rate(l−)
Rate(l+) + Rate(l−)

How does this compare with the CP conserving case (where ε = 0)?

Find the time dependence of the two pion rate for a beam of initially pure K0 particles.

Repeat the calculation of the two pion rate for an initially pure K
0
beam. Hence, find an

expression for

A2π =
Rate(Initial K0 → 2π)− Rate(Initial K0 → 2π)

Rate(Initial K0 → 2π) + Rate(Initial K
0 → 2π)

Again, compare these answers with the CP conserving case.
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