
Advanced Particle Physics 04/05

Dr Gavin Davies - Problem Sheet 3 Answers

1. From the given Lagrangian density, differentiating with respect to φ∗ gives

∂L

∂φ∗
= −m2φ,

∂L

∂(∂µφ∗)
= ∂µφ

so
∂µ∂

µφ = −m2φ or ∂µ∂
µφ+m2φ = 0

which is the Klein-Gordon equation. Note, the complex conjugate of this is simply

∂µ∂
µφ∗ +m2φ∗ = 0

so φ∗ also obeys the Klein-Gordon equation, as can also be deduced directly using the
Euler-Lagrange equations for φ.

For the transformation φ→ φe−iα with constant α, then the Lagrangian density is clearly
unchanged so there must be a conserved current. Using

∂φ

∂α
= −iφ,

∂φ∗

∂α
= iφ∗

then the conserved quantity in the equation given is

∂L

∂(∂µφ)

∂φ

∂α
+

∂L

∂(∂µφ∗)

∂φ∗

∂α
= (∂µφ∗)(−iφ) + (iφ∗)(∂µφ)

which is
Jµ = i [φ∗(∂µφ)− (∂µφ∗)φ]

This is the probability current density (and hence charge density when multiplied by q)
for spin 0 particles.

Taking derivatives and using the Klein-Gordon equation for both φ and φ∗

∂µJ
µ = i [(∂µφ

∗)(∂µφ) + φ∗(∂µ∂
µφ)− (∂µ∂

µφ∗)φ− (∂µφ∗)(∂µφ)]

= i
[

φ∗(−m2φ)− (−m2φ∗)φ
]

= 0

2. (i) The first and second terms in the Lagrangian are the kinetic and mass terms for a
free electron; they together give the free electron Lagrangian. The third term is for
a free photon field, i.e. with no charges. The fourth term is the interaction term
between the electron and photon.

(ii) For the case q ≡ ψ, then

∂L

∂ψ
=
i

2
γµ∂µψ −mψ − eAµγ

µψ

and
∂L

∂(∂µψ)
= −

i

2
γµψ

Hence, the Euler-Lagrange equations yield

i

2
γµ∂µψ −mψ − eAµγ

µψ = ∂µ

(

−
i

2
γµψ

)

= −
i

2
γµ∂µψ
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Rearranging gives
iγµ∂µψ − eAµγ

µψ = mψ

or
iγµ (∂µ + ieAµ)ψ = mψ

which is the Dirac equation in an electromagnetic field. The Hermitian conjugate of
this equation is

−i (∂µ − ieAµ)ψ
†γµ† = mψ†

Hence, using γ0γ0 = 1

−i (∂µ − ieAµ)ψ
†γ0γ0γµ†γ0 = mψ†γ0

and using γ0γµ†γ0 = γµ then

−i (∂µ − ieAµ)ψγ
µ = mψ

Consider
∂µ(eψγ

µψ) = e(∂µψ)γ
µψ + eψγµ(∂µψ)

From above

γµ(∂µψ) = −ieAµγ
µψ − imψ (∂µψ)γ

µ = ieAµψγ
µ + imψ

so
∂µ(eψγ

µψ) = e
(

ieAµψγ
µ + imψ

)

ψ + eψ (−ieAµγ
µψ − imψ) = 0

The current ψγµψ is the Dirac probability current and with the factor e represents
the conservation of charge.

(iii) Under the transformation
ψ′ = ψe−ieΛ

then

∂µψ
′ = (∂µψ)e

−ieΛ + ψ(∂µe
−ieΛ)

= (∂µψ)e
−ieΛ − ie(∂µΛ)ψe

−ieΛ

= (∂µψ)e
−ieΛ − ie(∂µΛ)ψ

′

and since
ψ
′
= ψeieΛ

then
ψ
′
γµ∂µψ

′ = ψγµ∂µψ − ie(∂µΛ)ψγ
µψ

Hence, the Lagrangian density changes as

L′ = L+
i

2

(

−ie(∂µΛ)ψγ
µψ − ie(∂µΛ)ψγ

µψ
)

= L+ e(∂µΛ)ψγ
µψ

and so is invariant under the combined transformations.

The form of the fourth term can be considered to be fixed by this requirement, so the
invariance of the Lagrangian density under the combined transformation determines
the coupling of the electron and photon fields.
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3. Using the chain rule, then

∂L

∂φ
=
∂L

∂x

∂x

∂φ
+
∂L

∂ẋ

∂ẋ

∂φ
+
∂L

∂y

∂y

∂φ
+
∂L

∂ẏ

∂ẏ

∂φ

The Euler-Lagrange equations then give

∂L

∂φ
=

d

dt

(

∂L

∂ẋ

)

∂x

∂φ
+
∂L

∂ẋ

d

dt

(

∂x

∂φ

)

+
d

dt

(

∂L

∂ẏ

)

∂y

∂φ
+
∂L

∂ẏ

d

dt

(

∂y

∂φ

)

=
d

dt

(

∂L

∂ẋ

∂x

∂φ
+
∂L

∂ẏ

∂y

∂φ

)

Under the rotation transformations

x→ x cosφ− y sinφ, y → x sinφ+ y cosφ

then
∂x

∂φ
= −x sinφ− y cosφ = −y,

∂y

∂φ
= x cosφ− y sinφ = x

Hence also
∂ẋ

∂φ
= −ẏ,

∂ẏ

∂φ
= ẋ

Note also
∂L

∂x
= −

dV

dr

∂r

∂x

where
∂r

∂x
=

∂

∂x

[

(x2 + y2)1/2
]

=
1

2
(x2 + y2)−1/2(2x) =

x

r

Therefore, Eq. 1 on the problem sheet gives

∂L

∂φ
=

∂L

∂x

∂x

∂φ
+
∂L

∂ẋ

∂ẋ

∂φ
+
∂L

∂y

∂y

∂φ
+
∂L

∂ẏ

∂ẏ

∂φ

=

(

−
dV

dr

x

r

)

(−y) + (mẋ) (−ẏ) +

(

−
dV

dr

y

r

)

(x) + (mẏ) (ẋ)

= −
dV

dr

(

−xy

r
+
xy

r

)

+ (−mẋẏ +mẋẏ) = 0

and so the Lagrangian is indeed invariant under the rotation. The conserved quantity
given in Eq. 2 on the problem sheet is

(

∂L

∂ẋ

∂x

∂φ
+
∂L

∂ẏ

∂y

∂φ

)

= −mẋy +mẏx = xpy − ypx

which is the (orbital) angular momentum in the x, y plane.

Changing variables, then

ẋ =
∂x

∂r
ṙ +

∂x

∂φ
φ̇ = ṙ cosφ− rφ̇ sinφ

Similarly
ẏ = ṙ sinφ+ rφ̇ cosφ

Hence

L =
1

2
m
[

(ṙ cosφ− rφ̇ sinφ)2 + (ṙ sinφ+ rφ̇ cosφ)2
]

− V (r)

=
1

2
m
(

ṙ2 + r2φ̇2
)

− V (r)
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and so does not depend on φ directly. Hence

∂L

∂φ
= 0,

∂L

∂φ̇
= mr2φ̇

The Euler-Lagrange equation for φ is therefore simply

d

dt

(

mr2φ̇
)

= 0

and so is explicitly a conservation law. From the above equations for ẋ and ẏ

ẋ sinφ = ṙ sinφ cosφ− rφ̇ sin2 φ, ẏ cosφ = ṙ cosφ sinφ+ rφ̇ cos2 φ

so
rφ̇ = ẏ cosφ− ẋ sinφ

and the conserved quantity is

mr2φ̇ = m (rẏ cosφ− rẋ sinφ) = mxẏ −myẋ = xpy − ypx

as before. In terms of r

∂L

∂r
= mrφ̇2 −

dV

dr
,

∂L

∂ṙ
= mṙ

The Euler-Lagrange equation for r is therefore

mr̈ = mrφ̇2 −
dV

dr

Let the conserved quantity be L, so

mr2φ̇ = L and so φ̇ =
L

mr2

Hence the equation for r is

mr̈ =
L2

mr3
−
dV

dr

and so automatically includes the centrifugal force.

4. This is quite a “convoluted” question and is very optional!!

The zero component of the four-velocity is

dx0

dτ
=
dt

dτ
= γ

The other three components are

dr

dτ
=
dt

dτ

dr

dt
= γβ

But since
E = γm, p = γmβ

then
dxµ

dτ
=
pµ

m
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From the Lagrangian
∂L

∂ (dxµ/dτ)
= −m

dxµ
dτ

− qAµ

so the conserved quantity

∂L

∂ (dxµ/dτ)

dxµ

dτ
− L = −m

dxµ
dτ

dxµ

dτ
− qAµ

dxµ

dτ
+

1

2
m
dxµ
dτ

dxµ

dτ
+ q

dxµ
dτ

Aµ

= −
1

2
m
dxµ
dτ

dxµ

dτ
= −

1

2m
pµp

µ

and hence pµp
µ is conserved. Using

∂L

∂xν
= ∂νL = −q

dxµ
dτ

∂νAµ

then the Euler-Lagrange equations give

−q
dxµ
dτ

∂νAµ =
d

dτ

(

−m
dxν

dτ
− qAν

)

= −
dpν

dτ
− q

dxµ
dτ

∂µAν

and so
dpν

dτ
= q

dxµ
dτ

∂νAµ − q
dxµ
dτ

∂µAν = q
dxµ
dτ

F νµ

The zero component of this is

dE

dτ
= γ

dE

dt
= q (γβxEx + γβyEy + γβzEz)

or
dE

dt
= qβ.E

which says the energy of the particle increases as the electric field does work on it. The
first component gives

dpx
dτ

= γ
dpx
dt

= q (γEx + γβyBz − γβzBy)

and similarly for the other two components, so the total can be written as

dp

dt
= qE + qβ ×B

which is the Lorentz force.

For the Lagrangian including the Λ gauge term

∂L

∂xν
= −q

dxµ
dτ

∂νAµ − q
dxµ
dτ

∂ν∂µΛ

and
∂L

∂ (dxµ/dτ)
= −m

dxµ
dτ

− qAµ − q∂µΛ

so the Euler-Lagrange equation becomes

−q
dxµ
dτ

∂νAµ − q
dxµ
dτ

∂ν∂µΛ =
d

dτ

(

−m
dxν

dτ
− qAν − q∂νΛ

)

= −
dpν

dτ
− q

dxµ
dτ

∂µAν − q
dxµ
dτ

∂µ∂νΛ
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The same Λ terms appear on both sides and so cancel, giving no effect. The action here is

A =

∫

L dτ

so under a gauge transformation, it changes to

A→ A−

∫

q
dxµ
dτ

∂µΛ dτ

However, in the same way as for Aµ above, the change of Λ with τ due to the motion of
the particle is

dΛ

dτ
=

∂Λ

∂xµ

dxµ
dτ

=
dxµ
dτ

∂µΛ

so the change in the action is

∆A =

∫

q
dΛ

dτ
dτ = q [Λ]

evaluated at the limits. Hence, for a given function Λ, this is a constant and so has no
effect on the position of the minimum of the action, and hence no effect on the particle
motion.

6


