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1. Combining the four matrices together gives
(

a b

c d

)

=

(

α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)

so solving for the αi gives

α0 =
a+ d

2
, α1 =

c+ b

2
, α2 =

c− b
2i

, α3 =
a− d
2

which can always be solved. Hence, any choice for γ0 can be broken down into these
matrices so we try

γ0 = α0I + α1σ1 + α2σ2 + α3σ3

Taking for example the anticommutator with γ1 = iσ1, then

γ0γ1 + γ1γ0 = 0 = (α0I + α1σ1 + α2σ2 + α3σ3) iσ1 + iσ1 (α0I + α1σ1 + α2σ2 + α3σ3)

= 2iα0σ1 + 2iα1σ1σ1 + iα2(σ2σ1 + σ1σ2) + iα3(σ3σ1 + σ1σ3)

But using the properties of the Pauli matrices

σ1σ1 = 1, σ2σ1 + σ1σ2 = 2δ21 = 0, σ3σ1 + σ1σ3 = 2δ31 = 0

then
γ0γ1 + γ1γ0 = 0 = 2iα0σ1 + 2iα1

for which only a γ0 with α0 = α1 = 0 will give the right result. Similarly, by anticommuting
with γ2 and γ3, then γ0 also requires α2 = 0 and α3 = 0, respectively, which means γ0 = 0.
This is not an acceptable solution as γ0γ0 = 1. Hence, there is no non-zero γ0 possible in
2× 2 for this choice of the γi.

For the 3 × 3 case, we want to find the trace of the matrices, for example γ0. We know
from the fundamental relation that

γ0γ1 + γ1γ0 = 0

so
γ1γ0γ1 + γ1γ1γ0 = 0

Also from the fundamental relation, we have

γ1γ1 = −1

so
γ0 = γ1γ0γ1

Taking the trace of both sides

Tr(γ0) = Tr(γ1γ0γ1) = Tr(γ1γ1γ0) = −Tr(γ0)

and so Tr(γ0) must be zero. The same holds for any of the γµ.

The eigenvalues, λ, and eigenvectors, v, of any one of the matrices by definition satisfy

γµv = λv
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Therefore, specifically not doing implied summation here

γµγµv = λγµv = λ2v

But from the fundamental relation

γµγµ = gµµ

so
λ = ±

√
gµµ

or, explicitly

λ = ±1 for µ = 0

λ = ±i for µ = 1, 2, 3

Consider γ0, which has eigenvalues of ±1. If there are n+ eigenvalues of +1 and n− of −1,
then using the general property of the trace of any matrix

Tr(γ0) =
∑

i

λi

and the zero value of the trace proved above, then

n+ − n− = 0

n+ = n−

However, the total number of eigenvalues is equal to the dimension of the matrix, so the
dimension of γ0 is n+ + n− = 2n+ and so must be even. A similar argument holds for the
other gamma matrices.

2. For the new matrices given by
γ′µ = UγµU−1

then

γ′µγ′ν + γ′νγ′µ = UγµU−1UγνU−1 + UγνU−1UγµU−1

= UγµγνU−1 + UγνγµU−1

= U(γµγν + γνγµ)U−1

= 2gµνUU−1 = 2gµν

also satifies the relation.

The new solution satisfies
iγ′µ∂µψ

′ = mψ′

so
iUγµU−1∂µψ

′ = mψ′

or
iγµ∂µ

(

U−1ψ′
)

= m
(

U−1ψ′
)

so that we can identify U−1ψ′ = ψ and so ψ′ = Uψ.

Taking the Hermitian conjugate of this relation

ψ′† = (Uψ)† = ψ†U †

2



To preserve the normalisation then

ψ†ψ = ψ′†ψ′ = ψ†U †Uψ

which is clearly true if U † = U−1.

The bilinear combinations contain ψ, which transforms as

ψ
′
= ψ′†γ0′ = ψ†U †Uγ0U−1 = ψ†γ0U−1 = ψU−1

so any bilinear combination transforms as

ψ
′
γ′α . . . γ′ζψ′ = ψU−1UγαU−1 . . . UγζU−1Uψ = ψγα . . . γζψ

and so is not changed by the change in the γµ matrices.

3. Consider
[

Ĥ, L̂x

]

=
[

−iγ0γ.∇+mγ0,−i (y∂3 − z∂2)
]

The complication arises because of the ∇ term operating on terms like y∂3. It is easiest
to handle this as separate commutators, so writing y = x2 and z = x3, then

[

Ĥ, L̂x

]

= −
[

γ0γ.∇, x2∂3

]

+
[

γ0γ.∇, x3∂2

]

− i
[

mγ0, x2∂3

]

+ i
[

mγ0, x3∂2

]

Consider the first of these
[

γ0γ.∇, x2∂3

]

= γ0
(

γ1∂1 + γ2∂2 + γ3∂3

) (

x2∂3

)

−
(

x2∂3

)

γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= x2γ0γ1∂1∂3 + γ0γ2∂3 + x2γ0γ2∂2∂3 + x2γ0γ3∂3∂3

−
(

x2∂3

)

γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

=
(

x2∂3

)

γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

+ γ0γ2∂3

−
(

x2∂3

)

γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= γ0γ2∂3

Similarly
[

γ0γ.∇, x3∂2

]

= γ0γ3∂2

The other two commutators are easier

−i
[

mγ0, x2∂3

]

= −imγ0x2∂3 + imx2∂3γ
0

but as nothing to the right of the derivative depends on the spatial coordinates, then this
gives zero. Hence for both

−i
[

mγ0, x2∂3

]

= i
[

mγ0, x3∂2

]

= 0

This gives
[

Ĥ, L̂x

]

= −γ0γ2∂3 + γ0γ3∂2 = −γ0 (γ ×∇)x

so generally, for all three components

[

Ĥ, L̂
]

= −γ0γ ×∇

3



For the spin operator, then the commutator of the x component with the Hamiltonian is

[

Ĥ, Ŝx

]

=

[

−iγ0γ.∇+mγ0,
1

2
γ5γ0γ1

]

which again can be considered as separate commutators

[

Ĥ, Ŝx

]

= − i
2

[

γ0γ.∇, γ5γ0γ1
]

+
m

2

[

γ0, γ5γ0γ1
]

In this case, there are no spatial components, so ∇ does not operate on anything. The
complications arise because the γ matrices do not commute. Consider the first term and
pull through the γ5 matrix, using the fundamental relation
[

γ0γ.∇, γ5γ0γ1
]

= γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

γ5γ0γ1 − γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= −γ0γ5
(

γ1∂1 + γ2∂2 + γ3∂3

)

γ0γ1 − γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= γ5γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

γ0γ1 − γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

Next, pull through the γ0 and γ1 matrices
[

γ0γ.∇, γ5γ0γ1
]

= −γ5γ0γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

γ1 − γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= −γ5γ0γ0γ1
(

γ1∂1 − γ2∂2 − γ3∂3

)

− γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= γ5γ0γ1γ0
(

γ1∂1 − γ2∂2 − γ3∂3

)

− γ5γ0γ1γ0
(

γ1∂1 + γ2∂2 + γ3∂3

)

= −2γ5γ0γ1γ0
(

γ2∂2 + γ3∂3

)

This can be reduced to a simpler form. Remembering that γ5 = iγ0γ1γ2γ3 and γ5γ5 = 1,
then

[

γ0γ.∇, γ5γ0γ1
]

= −2γ5γ0γ1γ0
(

γ2∂2 + γ3∂3

)

= −2γ0γ5γ0γ1γ2∂2 − 2γ0γ5γ0γ1γ3∂3

= 2γ0γ5γ0γ1γ2γ3γ3∂2 + 2γ0γ5γ0γ1γ2γ2γ3∂3

= 2γ0γ5γ0γ1γ2γ3γ3∂2 − 2γ0γ5γ0γ1γ2γ3γ2∂3

= 2γ0γ5(−iγ5)γ3∂2 − 2γ0γ5(−iγ5)γ2∂3

= −2iγ0γ3∂2 + 2iγ0γ2∂3

= 2iγ0
(

γ2∂3 − γ3∂2

)

The second commutator is again easier
[

γ0, γ5γ0γ1
]

= γ0γ5γ0γ1 − γ5γ0γ1γ0

= −γ5γ0γ0γ1 − γ5γ0γ1γ0

= γ5γ0γ1γ0 − γ5γ0γ1γ0

= 0

so overall the result is
[

Ĥ, Ŝx

]

= − i
2

[

2iγ0
(

γ2∂3 − γ3∂2

)]

= γ0
(

γ2∂3 − γ3∂2

)

= γ0 (γ ×∇)x
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and so, for all three components

[

Ĥ, Ŝ
]

= γ0γ ×∇

It is therefore obvious the sum of the two commutators for L̂ and Ŝ will give zero, so the
total angular momentum is conserved.

4. (i) A parity operation reflects each of the three spatial coordinate axes through the
origin, so that r → −r.
Under a parity operation, a polar vector is any vector which acts in the same way
as r above, i.e. each component is reflected. An axial vector has no change of its
coordinates under a parity operation. Examples of polar vectors include position r,
momentum p and the electric field E. Examples of axial vectors include angular
momentum L = r × p (since both r and p change sign) and the magnetic field B.

If a system is covariant under a parity operation, then the equations governing it do
not change form under such an operation, i.e. they have a symmetry under the parity
operation. There is a general connection between such a symmetry and a conservation
law. In this case, the symmetry leads to the conservation of a quantity, also called
parity. Because the operation is discrete, the allowed values of the parity quantity
are also discrete. For a system, then if

P̂ψ = Pψ

then applying the operation a second time gives

P̂ P̂ψ = PP̂ψ = P 2ψ

However, by definition, applying the operation twice returns the system to the original
state, so P 2 = 1 and therefore P = ±1.

(ii) Under a parity operation, the ∇ operator changes sign, so the parity-inverted Dirac
equation is

iγ0∂0ψ
′ − iγ.∇ψ′ −mψ′ = 0,

Multiplying from the left by γ0, then this becomes

iγ0γ0∂0ψ
′ − iγ0γ.∇ψ′ −mγ0ψ′ = 0

Using the properties of the γ matrices

γ0γ + γγ0 = 0

this becomes
iγ0∂0(γ

0ψ′) + iγ.∇(γ0ψ′)−m(γ0ψ′) = 0

which is the original Dirac equation with a solution γ0ψ′. This must be ψ, so

γ0ψ′ = ψ

and using
γ0γ0 = 1

then
γ0ψ = γ0γ0ψ′ = ψ′ = P̂ψ
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(iii) The parity-transformed Hermitian conjugate is

ψ′† = (γ0ψ)† = ψ†γ0† = ψ†γ0

where γ0† = γ0 is needed due to the requirement that the Hamiltonian is Hermitian.
The parity-transformed adjoint is then

ψ′ = ψ′†γ0 = ψ†γ0γ0 = ψγ0

Hence, under a parity operation, the four-vector Jµ
X becomes

J
′µ
X = ψ′γµφ′ = ψγ0γµγ0φ

Hence, the time and spatial components change as

J ′0X = ψγ0γ0γ0φ = ψγ0φ = J0
X

and
J ′iX = ψγ0γiγ0φ = −ψγiγ0γ0φ = −ψγiφ = −J i

X

The time component is unchanged and the spatial components change sign, so this
is a polar vector. Similarly, for Jµ

Y

J
′µ
Y = ψ′γµγ5φ′ = ψγ0γµγ5γ0φ = −ψγ0γµγ0γ5φ

Hence, the time and spatial components change as

J ′0Y = −ψγ0γ0γ0γ5φ = −ψγ0γ5φ = −J0
Y

and
J ′iY = −ψγ0γiγ0γ5φ = ψγiγ0γ0γ5φ = ψγiγ5φ = J i

Y

Here, the time component changes sign and the spatial ones do not, so this is an axial
vector.

(iv) Only Jµ
X takes part in electromagnetic and strong interactions. Therefore, there is

only one type of vector involved and parity is conserved. In weak interactions, both
J
µ
X and Jµ

Y participate and this lack of a definite vector type under parity operations
gives rise to the non-conservation of parity in weak interactions.

The classic example of parity non-conservation is the original experiment by Wu.
The spins of 60Co atoms were aligned in a magnetic field and the subsequent beta
decays observed. The emitted electrons were found to have an angular distribution
of (1 − β cos θ) with respect to the magnetic field. Under a parity transformation,
the magnetic field would be unchanged (as it is an axial vector) while the electron
momentum would be reversed (as it is a polar vector). The resulting distribution
would then be (1 + β cos θ), which is clearly not covariant.
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