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1. Combining the four matrices together gives
a b\ [ aptaz a3 —ia
c d ) \ a1+iag ap—as

a+d c+b c—b a—d
) a] = ) Qg = P a3 =
2 2 27 2

so solving for the a; gives

g =

which can always be solved. Hence, any choice for 4 can be broken down into these
matrices so we try
’yo = OéoI + 101 + (o9 + @303

Taking for example the anticommutator with v! = ioq, then

’yo’)/l + ’yl’yo =0 = (CK()I + o101 + agog + 04303) 101 + 101 (Ozo[ + o101 + 0909 + 04303)
= 2iago1 + 2iao101 + ’iOzz(UgUl + 0102> + ia3(0301 + 0'1(73)

But using the properties of the Pauli matrices
o101 =1, 0201 + 0102 = 2091 = 0, 0301 + 0103 = 2031 = 0
then
Oyt + 4190 = 0 = 2iagor + 2y

for which only a 0 with ag = a1 = 0 will give the right result. Similarly, by anticommuting
with 42 and 3, then 4" also requires .y = 0 and a3 = 0, respectively, which means y* = 0.
This is not an acceptable solution as 7%9° = 1. Hence, there is no non-zero 7° possible in
2 x 2 for this choice of the 7.

For the 3 x 3 case, we want to find the trace of the matrices, for example 7°. We know
from the fundamental relation that

Ot 44140 =

SO

A0~ A la140 —

Also from the fundamental relation, we have
vyt =1
SO
A0 = 41041
Taking the trace of both sides
Tr(y°) = Tr(y'9°y") = Tr(v'4'9°%) = =Tr(y°)
and so T7(+%) must be zero. The same holds for any of the y*.

The eigenvalues, A, and eigenvectors, v, of any one of the matrices by definition satisfy

~yro =l



Therefore, specifically not doing implied summation here
Aty = Ayto = N2
But from the fundamental relation
At = gl
SO
A = /gt
or, explicitly
A =21 for uw =0
A =41 for o =1,2,3

Consider «?, which has eigenvalues of +1. If there are n eigenvalues of +1 and n_ of —1,
then using the general property of the trace of any matrix

Tr(7°) = Z A
i
and the zero value of the trace proved above, then

ny —n_=0
ny =n—
However, the total number of eigenvalues is equal to the dimension of the matrix, so the

dimension of Y is ny +n_ = 2n, and so must be even. A similar argument holds for the
other gamma matrices.

. For the new matrices given by
,_y/,u, — U,y,uUfl

then
'}/M’}/V + ")’/V’)/M — U’}/MU_lU"}/VU_l + U’}/VU_lU’)/MU_l
UrntyYU L 4+ UyPA*U 1
Uy + U
= 2gMUU" =2g"

also satifies the relation.
The new solution satisfies

Z"}/Naulﬁ/ — mwl
SO

iUAU 10,0 = my/
or
iv' Oy (U_1¢/) =m (U‘WJ')

so that we can identify U =11’ = and so v/ = U1.

Taking the Hermitian conjugate of this relation

Wt = (Uy) =4t



To preserve the normalisation then
vl =y'ly’ =4TUtuy

which is clearly true if UT = U1,

The bilinear combinations contain 1, which transforms as
V' =y = tUtUR U = U =yU !
so any bilinear combination transforms as
PN AY =PUTUAU . UASUTIUY = 9y A%
and so is not changed by the change in the y* matrices.

. Consider
[ﬁ, I:x} = [—i’yo'y.V +mA°, —i (yds — 282)}

The complication arises because of the V term operating on terms like y03. It is easiest
to handle this as separate commutators, so writing y = 22 and z = x>, then

{ﬁ,ﬁw} =— {'yo’y.V,xQ&g} + [’yO'y.V,a;‘gag} —1 [m’yo,xQ(?g} +1 {m'yo,x‘gag}
Consider the first of these
[107.9,0%0s] = 2" (v'00 + 120 +4°0) (#205) — (205) 1 (701 + 1205 + 7705 )
= 2299910105 + 197205 + 2*7720,05 + 2%7°7* 0303
- (9325?,) o (7181 + %0, + 73(93)
= ($283> ’70 (’}/161 + ’)/282 + ’}’383> + 707283
— (2205) 1° (Y01 + 202 + 7705 )
= %705
Similarly
1°7.9,2%0,] = 1°7°0,
The other two commutators are easier
—1 [mvo, x283} = —imA 2?05 + ima203~°

but as nothing to the right of the derivative depends on the spatial coordinates, then this
gives zero. Hence for both

—i [m’yo, x283} =1 {myo,:ﬂ?’ag] =0

This gives
[H, Lz} = 94203 + 19430, = =70 (v x V).

so generally, for all three components

[ﬁ,i} =y xV



For the spin operator, then the commutator of the £ component with the Hamiltonian is
A ) 1
1,8,] = {—WOV.V +mA’, 2757071}
which again can be considered as separate commutators
m
2

In this case, there are no spatial components, so V does not operate on anything. The
complications arise because the v matrices do not commute. Consider the first term and
pull through the ° matrix, using the fundamental relation

[ﬁ, Sx:| _ _% [vov.V,vg"yO'yl] + 5.0 1}

[7°,7*7%

[1°7.9,9%%9] = 4% (Y1010 4920 +7%05) 171 9" = 47109190 (4101 + 4202 + s
= =% (7191 + 7202 +7°33) 1% =171 71" ('O + 7202 + 7°0s)
= 7 (Y101 + 720 +7°03) 107" = P10 (V01 + 120n + 7°0)

Next, pull through the v° and +! matrices

79,7799 = =172 (710 + 9202 + 970 ) 7! = 4P 10 (710 + 4205 + 05
= =70 (Y01 = 7202 — 05 ) = 472 v"° (v 0n + 7202 + 7°0s)
= 10910 (11010 = 720 — °05) = 1°10"9° (7101 + 720s + 7705
= —29"9%9"9° (1202 +°0s)

1.2,3

This can be reduced to a simpler form. Remembering that v° = i7%y1y243 and v°¢° = 1,

then

PV, = 29790910 (20, + 1°0s)

— _2'}/0’}’5’7071’7282 —2’}/0’)/570"}/1"}/383
= 29%9°7""9 %98 + 29%957 %1y 0
_ 2’}/0’75’70’71’72’}/3’7382 _ 2’}/0’}/5’}’0’}/1’72’}/3’}/283
= 29°9°(=iv")y°02 — 29°9°(~in")*0s
= 2079930y + 2i7%4%0;
= 27" (1205 = 4°0,)

The second commutator is again easier

[ = AP =0

= P0q04 1 50410

— 7570,}/170 _ 757071,}/0

= 0

so overall the result is

8 = 3 (o)



4.

and so, for all three components

[f[,g] =y xV

It is therefore obvious the sum of the two commutators for L and S will give zero, so the
total angular momentum is conserved.

(i)

(i)

A parity operation reflects each of the three spatial coordinate axes through the
origin, so that r — —r.

Under a parity operation, a polar vector is any vector which acts in the same way
as r above, i.e. each component is reflected. An axial vector has no change of its
coordinates under a parity operation. Examples of polar vectors include position r,
momentum p and the electric field E. Examples of axial vectors include angular
momentum L = r x p (since both r and p change sign) and the magnetic field B.

If a system is covariant under a parity operation, then the equations governing it do
not change form under such an operation, i.e. they have a symmetry under the parity
operation. There is a general connection between such a symmetry and a conservation
law. In this case, the symmetry leads to the conservation of a quantity, also called
parity. Because the operation is discrete, the allowed values of the parity quantity
are also discrete. For a system, then if

Py = Py
then applying the operation a second time gives
PPy = PPy = P%y)

However, by definition, applying the operation twice returns the system to the original
state, so P? = 1 and therefore P = +1.

Under a parity operation, the V operator changes sign, so the parity-inverted Dirac
equation is
V0 — iy. V' —ma) =0,
Multiplying from the left by 4°, then this becomes
i"7°00 — iy V' —my Py =0
Using the properties of the v matrices
Py +7°=0
this becomes
(V") +iv.V (%) =m(y%¢) = 0
which is the original Dirac equation with a solution 4%¢’. This must be v, so
VY =y

and using

then



(iii)

(iv)

The parity-transformed Hermitian conjugate is
U= (0T = Ty = a0

where 407 = 70 is needed due to the requirement that the Hamiltonian is Hermitian.
The parity-transformed adjoint is then

P =910 = 91400 = 9y°
Hence, under a parity operation, the four-vector J4 becomes
T = P =970
Hence, the time and spatial components change as
TR =197 = 970 = I}
and
T =790 = =770 = —Pyie = —Jk

The time component is unchanged and the spatial components change sign, so this
is a polar vector. Similarly, for Ji/

T =00 = P00 = =y 039"
Hence, the time and spatial components change as
JP = —9°7%9%9%¢ = —py04P¢ = —J9
Iy = =970 = 900 b = Py b = I
Here, the time component changes sign and the spatial ones do not, so this is an axial
vector.

Only J% takes part in electromagnetic and strong interactions. Therefore, there is
only one type of vector involved and parity is conserved. In weak interactions, both
J% and Ji participate and this lack of a definite vector type under parity operations
gives rise to the non-conservation of parity in weak interactions.

The classic example of parity non-conservation is the original experiment by Wu.
The spins of 9°Co atoms were aligned in a magnetic field and the subsequent beta
decays observed. The emitted electrons were found to have an angular distribution
of (1 — Bcosf) with respect to the magnetic field. Under a parity transformation,
the magnetic field would be unchanged (as it is an axial vector) while the electron
momentum would be reversed (as it is a polar vector). The resulting distribution
would then be (1 4 §cosf), which is clearly not covariant.



