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1. The Lorentz transformations along the z axis for t and z are

t′ = γ(t− βz), z′ = γ(z − βt)

The same equations therefore hold for E and pz. In the rest frame (R), the values are
ER = m and pRx = pRy = pRz = 0. Boosting the observer by −β so that the particle
appears to be moving by +β along the z axis, then the boosted values are given by

E = γ(ER + βpRz) = γm

and
pz = γ(pRz + βER) = γβm

Clearly, the boosted values of px = py = 0 as these are not affected by a Lorentz transfor-
mation. Hence, the magnitude of the momentum is given by

p = γmβ

Noting that this gives p = Eβ, then inverting these equations simply gives

γ =
E

m
, β =

p

E

The initial value of E2
R − p2

R is simply m2. The boosted value is

E2 − p2 = γ2m2 − γ2m2β2 = γ2m2(1− β2)

But since

γ2 =
1

1− β2

then
E2 − p2 = m2

and so this combination is invariant. Physically, it corresponds to the square of the particle
mass.

2. The total energy and momentum are conserved, so in the rest frame of X then

mX = Ec + Ed, pd = −pc

The latter gives
p2

c = p2

d

which can be expanded as
E2

c −m2

c = E2

d −m2

d

and can be rearranged, using the difference of squares, to give

m2

c −m2

d = E2

c − E2

d = (Ec + Ed)(Ec − Ed)

so, using the energy conservation equation above

Ec − Ed =
m2
c −m2

d

mX
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Summing gives

2Ec = mX +
m2
c −m2

d

mX

so

Ec =
m2
X +m2

c −m2
d

2mX

and similarly for Ed

Ed =
m2
X +m2

d −m2
c

2mX

Check energy conservation by summing these to give

Ec + Ed =
m2
X +m2

c −m2
d

2mX
+

m2
X +m2

d −m2
c

2mX
=

2m2
X

2mX
= mX

If the final state particles are the same, or antiparticles of each other, then mc = md so

Ec =
m2
X

2mX
=

mX

2
= Ed

and each particle has half the available energy, as expected by symmetry.

The magnitude of the momentum is given by

pc =
√

E2
c −m2

c =

√

(m2
X +m2

c −m2
d)

2

4m2
X

−m2
c

This becomes

pc =

√

m4
X +m4

c +m4
d + 2m2

Xm2
c − 2m2

Xm2
d − 2m2

cm
2
d − 4m2

Xm2
c

2mX

which is

pc =

√

m4
X +m4

c +m4
d − 2m2

Xm2
c − 2m2

Xm2
d − 2m2

cm
2
d

2mX

This is symmetric for c and d so the value of pd is the same; this is obviously necessary as
the magnitudes of the momenta are by definition the same in the centre-of-mass.

If mc = md, then this reduces to

pc =

√

m4
X − 4m2

Xm2
c

2mX
=

√

m2
X

4
−m2

c

as would be expected from the result for the energy above.

Finally, if md = 0, then

pc =

√

m4
X +m4

c − 2m2
Xm2

c

2mX
=

√

(m2
X −m2

c)
2

2mX
=

m2
X −m2

c

2mX

3. (i) The Feynman diagram for π0 → γγ is shown below.

In the π0 rest frame, the photon energies must be equal and have a magnitude Eγ =
mπ/2 = 67.5 MeV.
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(ii) For a 0.5 GeV π0, γ = Eπ/mπ = 3.70 and β = pπ/Eπ =
√

E2
π −m2

π/Eπ = 0.963 so
the energy of a photon emitted in the same direction as the π0 will be

E′
1 = γ(Eγ + βpγ) = γ(1 + β)Eγ = 0.490 GeV

which is therefore the maximum possible energy. The second photon in this situation
will have an energy E ′

2 = 0.5− E′
1 = 0.010 GeV, also given by

E′
2 = γ(1− β)Eγ = 0.010 GeV

and it will be going in the opposite direction to the first photon.

(iii) For back-to-back photons, then the total momentum magnitude is given by

(p1 + p2)
2 = (E′

1 − E′
2)

2

and since the total energy is E ′
1 + E′

2 then the invariant mass is

m =
√

(E′
1
+ E′

2
)2 − (p1 + p2)

2 =
√

(E′
1
+ E′

2
)2 − (E′

1
− E′

2
)2

which simplifies to

=
√

E′2
1
+ E′2

2
+ 2E′

1
E′

2
− E′2

1
− E′2

2
+ 2E′

1
E′

2
= 2

√

E′
1
E′

2

(iv) The partial derivatives of the invariant mass are

∂m

∂E′
1

=
E′

2
√

E′
1
E′

2

=

√

E′
2

E′
1

and similarly for E ′
2. Hence, the error on the invariant mass is

σ2

m =

(

∂m

∂E′
1

)2

σ2

E′

1

+

(

∂m

∂E′
2

)2

σ2

E′

2

and with
σE′

i

= 0.02E′
i

then

σ2

m =
E′

2

E′
1

(0.02)2E′2
1 +

E′
1

E′
2

(0.02)2E′2
2 = 2(0.02)2E′

1E
′
2

and so
σm = 0.02

√

2E′
1
E′

2
= 0.02

m√
2
= 1.9 MeV
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In natural units, the π0 lifetime is 8.4×10−17 s ×1.519×1024 GeV−1s−1 = 1.28×108

GeV−1 so the width is Γπ = 1/τπ = 7.9 × 10−9 GeV or 7.9 × 10−6 MeV, which is
much smaller than the width due to experimental resolution. Hence, the observed
width is completely due to the calorimeter performance.

(v) For a 4 GeV π0, γ = Eπ/mπ = 29.6 and β = pπ/Eπ =
√

E2
π −m2

π/Eπ = 0.9994. In
the rest frame of the π0, the average decay time is τπ. In the laboratory frame, time
dilation means the average decay time is lengthened to 〈t〉 = γτπ. During this time,
the π0 will have gone a distance 〈t〉cβ so the average decay length is

〈l〉 = 〈t〉cβ = γβcτπ = 7.45× 10−7 m

which is a negligible distance compared with the dimensions of the calorimeter.

The longitudinal momentum of the photons in the laboratory frame is given by

p′l = γ(plγ + βEγ) = γβEγ = 1.9989 GeV

while their transverse momentum is unchanged by the π0 motion and so is pt = p′t =
67.5 MeV. The total opening angle, α, between them is therefore

α = 2 tan−1

(

p′t
p′l

)

= 3.9◦ = 67 mrad

The distance between the photons when they hit the calorimeter face is rα = 6.7 cm,
which is of the same order as the size of each crystal face. Therefore, the photons
will often be in the same crystal, and always at least in neighbouring crystals, so that
they cannot easily be distinguished as separate photons. Hence, no invariant mass
can be calculated and so high energy π0 mesons cannot easily be detected using this
technique at BaBar.

4. Using the Lorentz transformation for the momentum

p′c = γ(pc + βEc) = γ





√

√

√

√

(

m2
X

4
−m2

c

)

+ β
mX

2





This is larger than the momentum of X when p′c > γβmX which corresponds to

γ





√

√

√

√

(

m2
X

4
−m2

c

)

+ β
mX

2



 > γβmX

or
√

√

√

√

(

m2
X

4
−m2

c

)

> β
mX

2

In terms of the rest frame momentum and energy, this is

pc > βEc so
pc
Ec

= βc > β

Therefore, the requirement is that the speed of particle c in the rest frame is greater than
the speed of the particle X in the moving frame, i.e. the boost velocity.

This is straightforward to understand using momentum conservation; when p′c > p′X , then
particle d must be moving in the opposite direction to balance momentum. This means in
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the boosted frame, it must have a velocity along the −z axis which means its speed in the
rest frame (which is the same as that of c) must be bigger than that of X, i.e. the boost
velocity. Conversely, if p′c < p′X , then the boost velocity is bigger than the speed of d and
so it gets completely flipped around and is going in the same direction as c.

For mc = md = 0, then pc = Ec = mX/2. The Lorentz transformations on Ec and pcz are
then

E′
c = γ(Ec + βpcz) = γ

(

mX

2
+ β

mX

2
cos θc

)

Hence

dE′
c =

γβmX

2
d(cos θc)

and so the probability distribution for the energy is

P (E′
c)dE

′
c =

1

γβmX
dE′

c

This is also a flat distribution (i.e. does not depend on energy) with limits given by
cos θc = ±1, which are

E′
c max/min

= γ

(

mX

2
± β

mX

2

)

=
γmX

2
(1± β) =

E′
X

2
(1± β)
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