
Lecture 6, February 6th 2007                                                                                     

Solutions of the Dirac Equation

In the previous lecture we used the Dirac equation to derive the continuity and the current
equation for spinors and showed that the Dirac equation always leads to states which have
probability  greater  or  equal  to  zero.  Hence,  it  does  not  suffer  from  the  negative
probability problems of the Klein Gordon equation. In this lecture we solve the Dirac
equation and show that like the Klein Gordon equation it has both positive and negative
energy solutions. Some of the properties of the solutions of the Dirac equation are also
presented. 

The reader may wonder what are we going to do with the negative energy solutions. As it
will be shown later, Dirac solved this problem by proposing his hole-theory, valid only
for  fermions,  according  to  which  the  negative  energy solutions  are  re-interpreted  as
antiparticle solutions. Eventually all the negative energy solutions for both Bosons and
Fermions were re-interpreted by Feynman and Stückelberg in a consistent  framework
which will be the subject of a next lecture.

Solutions of the Dirac Equation

We start from the Dirac equation in the covariant form:

                                        [ i ∂−m] x  = 0                         (1)

The anti-commutation relations form the previous lecture:

                           {i , j } = 2ij  ,  { , j } = 0  ,    2 = 1  

combined with the definitions of the gamma matrices:

                      i = i i = 1,2,3   ;   0 =  ;     = 0 ; 

lead the to covariant anti-commutation relations for the gamma matrices:
 
                                         { ,} = 2 g                                 (2)

Assume that the solutions to the Dirac equation are of the form:

                                         x = u  pe−i p⋅x                           (3)

From (1) and (3) we have that: [ p−m] x  = 0                  (4)
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Equation (4) can be written in a matrix form as:

[ I 0
0 −I  p0 −  0 

− 0⋅p −  I 0
0 I m]u  p = 0                 (5)

where the  exponential  term is  not  needed and has  been omitted.  It  is  perhaps worth
reminding the reader that although the matrix equation above seems to be a 2x2 matrix
equation, in reality it refers to 4x4 matrix objects except for u  p which is a 4x1 column
object.

We can write the spinor u  p in terms of arbitrary  ,  2x1 column matrices as:

                                                     u  p =                                (6)

Substituting (6) into (5) we get:   p0−m −⋅p
⋅p − p0m = 0     (7)

If (7) is to have non-zero (non-trivial) solutions, the determinant of the matrix multiplying
u  p  must be zero (so that the inverse matrix does not exist). Hence:

                                p0−m−1 p0m ⋅p2 = 0                  (8)

and using  the identity:     ⋅p2 = p2 , equation (8) gives:

 p02 = p2m2 ⇒ p0 = ± p2m2 ⇒ p0 = E = ± p2m2  (9)

Hence, p0 can be identified with the relativistic energy of the particle. However, as in
the Klein Gordon equation we have both positive and negative energy solutions. Lets
ignore this for the moment and continue solving the Dirac equation.
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Equations (8) and (9) give:  E−m −⋅p
⋅p −Em = 0      (10)

First lets try to solve the Dirac equation at the rest frame of the particle where the
momentum is zero:

Positive Energy Solutions

If   E=m20 from (10) we have that:

                                   

                                           0 0
0 −2 m = 0

This means that for positive energy solutions we have that  = 0 and ≠0 .

In other words in general we could have that:  = a10b01 . Clearly there are two

independent solutions of the form:

                            1 t  = 100
0
 e−imt  and  2 t  =  0

1
0
0
 e−imt
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Negative Energy Solutions

Next we deal with the negative solutions where E=−m20 . In this case eq. (10) gives:

                                              −2 m 0
0 0 = 0

which means that  = 0 and ≠0 . As before:

                                               = a10b01
and we have two more negative energy independent solutions :

                 3 t  =  0
0
1
0
 eimt   and   4 x  = 0

0
0
1
 eimt

The student who knows quantum mechanics will have realized by now that  there is a
two-fold degeneracy in the energy spectrum.  For every energy eigenvalue we have
two eigenvectors orthogonal to each other. Hence,  there must be an operator that
commutes with the Hamiltonian which has a common set of eigenvectors with the
Hamiltonian. We will revisit this issue later when we discuss about helicity.

Next lets try to solve the Dirac equation in the general case where the momentum is not
zero. Equation (10) gives:

                          E−m−⋅p=0 ⇒  =
⋅p
E−m

    (11)

                           ⋅p−Em=0 ⇒  =
⋅p
Em

    (12)
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Positive Energy Solutions

Equation (12) is well defined for positive energy solutions (the denominator is always
non-zero). Hence the 4x1 column solutions can be written as:

        1,2 x  = N  ±

 ⋅p
Em

±e−ip x = N  1
 ⋅p
Em±e−ip x  (13)

where   = 10  and  − = 01 .  The  superscript  (1)  indicates  the  first  solution

obtained using   and the superscript (2) indicates the second solution obtained using
− .  Note  that  ⋅p± = ±± where  p is  the  unit  vector  at  the  direction  of  the
momentum of  the  particle.  It  is  convenient  but  not  necessary to  choose  the  particle
direction to be along the z-axis as done here.  N is a normalization constant to be fixed
later.

Negative Energy Solutions

Similarly for negative energies only (11) is well defined and we use it to obtain the
spinors corresponding to the negative energy

           3,4 x  = N   ⋅pE−m
±

± e−ip x = N   ⋅pE−m
1 ±e−ip x   (14)

It is worth noting here that this form of solutions is not unique. For example had we
started by assuming a solution of the form:

                                        x = v  pei p⋅x

(note that the sign of the exponent is now positive instead of negative) then we would
have obtained as solutions:
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Positive Energy Solutions:

      1,2 x  = N   ⋅pEm
±

±  eip x = N   ⋅pEm
1 ±eip x       (15)

Negative Energy Solutions:

       3,4 x  = N  ±

 ⋅p
E−m

± e−ip x = N  1
 ⋅p
E−m±e−ip x      (16)

Note that equations (14) and (15), that is the negative energy solutions of the first set and
the positive energy solutions of the second set, are related by the a simple transformation
where:  p  p ' = − p . This is not an accident and as we shall see later we will
interpret (13)  as a positive energy electron solution and (15) as a positive energy positron
solution. In other words negative energy particle solutions, like (14), going backward
in  time  are  equivalent  with  positive  energy  anti-particle  solutions  propagating
forward in time.

The Dirac Current and Normalization of the Dirac Solutions

As we have seen before the 0th component of the current density is the particle probability
density  and  the  other  three  components  represent  the  3-dimensional  particle  current
density:

                  J   x  =  x  x  ⇒  =  = 00 = 

                                                           ⇒ J = 0

We are going to use this to derive the normalization, N, of the Dirac spinors:
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               = J 0 =  = ∣N∣2s1 ,
 ⋅p
Em 1

 ⋅p
Ems

                 = J 0 = ∣N∣2s1 ⋅p2

Em2s = 2 E
EM

∣N∣20

Hence, we have verified explicitly that that probability is positive. As seen before these
solutions  must  normalize  to  2E  particles  per  unit  volume  (the  probability  must
transform as the 0th component of a 4-vector as seen in the Klein Gordon case) which
means that:

                               N=Em    and      = 2 E                        (17)

Similarly for negative energy solutions we have that:

      = J 0 = ∣N∣2s  ⋅pE−m
, 1  ⋅pE−m

1 s = ∣N∣2  p2

E−m2
1

                           = J 0 = ∣N∣2 2 E
E−M 

= ∣N∣2 2∣E∣
∣E∣M 

0

 

which gives:

                                       N=∣E∣m and  = 2∣E∣              (18)
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Lets now calculate the 3-d vector current using positive energy spinors:

                                       J =  x   x  ⇒

        J = Ems1 ,
 ⋅p
Em I 0

0 −I  0 
− 0 1

 ⋅p
Ems ⇒

        J = Ems , s
 ⋅p
Em 0 

 0
s

 ⋅p
Em

s ⇒
        J = Ems , s

 ⋅p
Em   ⋅p

Em
s

s  ⇒
        J = Ems 

 ⋅p
Em

ss
 ⋅p
Em s ⇒

It is now more convenient to write the current in terms of its components (with i=1,2,3)

           J i = Ems i 
j p j

Em
ss

 j p j
Em

 is ⇒

          J i = Ems i 
j p j

Em
ss

 j p j
Em

 is ⇒
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J i = s  i  j p j j p j i s ⇒  J i = p j s i j j i s ⇒

The Pauli matrices have the property: { i , j } = 2ij . Hence, the current becomes:

           J i = p j s2ijs ⇒   J i = 2 pi ⇒ J = 2 p          (19)

From (17) and (19) we have that the covariant current is:

                                              J  = 2 p = 2E ; p

By multiplying by (-e) one can convert this to the electromagnetic charge and current
density for electrons as :

                                  EM = −2 eE = −2 ep0 ; e  0

                                  J EM = −2 e p

                                  J EM
 = −2e p                                                  (20)

When we discuss local gauge invariance we will see that this factor of charge comes in a
more natural way in to the current equation. For the moment we just include it 'by-hand'.
So equation (20) gives us the electromagnetic current for positive energy electrons (this is
how we constructed it from the positive energy solutions).

One point to be made here is that if equation (20) give us the electromagnetic current
density for electrons then:

                                  J EM
 = 2e p                                                 (21)

must be the one for positive energy positrons. Equation (21)  can be written as:

                     J EM
 = 2 e p = −2 e − p = −2 e −E ;−p     (22)
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However, equation (22)  looks very much like the current for electrons given by (20) but
with  the  signs  of  energy and momentum reversed.  So  it  appears  that  the  negative
energy  electron  solutions  may  be  used   this  way  to  describe  positive  energy
positrons. In other words in QFT language: emitting (creating) a positive energy
positron is equivalent to absorbing (annihilating) a negative energy electron. Again,
this is consistent with the comments we made when we were discussing equation (15)
and we will come back to tall these later when we discuss antiparticles.

Spin and Helicity of the Dirac Solutions

 Define the spin operator as  =   0
0     and the helicity operator as

                                            ⋅p =  ⋅p 0
0 ⋅p

where p is the unit vector at the direction of the particle momentum.

It is easy and it is left for homework to show that the helicity operator commutes with the
Hamiltonian [ ⋅p , H ] = 0 .  In  other  words  helicity  is  a  conserved  quantity.
However  since  it  is  expressed  in  a  3-d  vector  product,  helicity  is  not  a  Lorentz
invariant. The reason for this is easy to understand: Helicity is the projection of the spin
at the direction of motion. Consider an observer that moves faster than a given particle of
a definite helicity. The observer overcomes the particle and in his frame he starts seeing it
moving away from him. In other words the momentum of the particle has flipped sign as
far as he is concerned. However, the spin does not flip sign (why should it any way ?).
Hence,  the  moving  observer,  when  he  overcomes  the  particle,  sees  that  the  particle
helicity has changed sign. Therefore, although the helicity can be conserved in a given
frame (commutes with the Hamiltonian), it  is not Lorentz invariant (Its value changes
from frame to frame). The careful reader  must have noticed that for the above argument
to hold, it must be that the particle has some mass hence it does not travel with the speed
of light and there is always the possibility of being overcome by something faster. If the
particle has no mass and therefore moves with the speed of light, then it is impossible to
find an observer that overcomes it and the argument is no longer valid. Hence, massless
particles do not flip helicity form frame to frame which gives us an indication that helicity
must be somehow Lorentz invariant when it come to massless particles. It turns out that it
a a bit more complicated than that. The answer to this will be given in one of the next
Lectures when we discuss Chirality and Helicity.
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It  is  important  to  understand  that  the  solutions  of  the  Dirac  equation  are  not
eigenfunctions of the spin operator but only of the helicity operator. In other words
only the spin at the direction of motion is a good quantum number which is conserved.

This  of  course  comes  from  the  fact  that  the  helicity  operator  commutes  with  the
Hamiltonian and explains the origin of the two-fold degeneracy of the Dirac solutions
discussed before. Each of the solutions appears with both positive and negative helicity
corresponding to the same energy.

The reader may be surprised when he finds out  that  neither  the spin nor the angular
momentum are independently conserved since it can be shown that:

                        [  , H ] ≠ 0 and [ L , H ] ≠ 0

However, the total angular momentum, 

                                               J = L  1
2


is conserved  because it can be shown that:

                                              [H , L1
2
] = 0

This result gives us a strong indication that the Dirac equation describes spin half
fermions. However, showing this will  be left for the homework.  
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