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Tensor notation

Tensor notation in three dimensions:

We present here a brief summary of  tensor notation in three dimensions simply to refresh
the memory of the reader and provide a smooth introduction to the relativistic tensor
notation which follows.

A polar vector in 3 dimensions (3-D) is an object which, given a coordinate frame, can
be defined as 
                                 a = ax , a y , az = a1, a2, a3

and transforms as a vector under rotations. It is usual in text books that the standard  
(x, y, z) coordinate indices are replaced by the (1, 2, 3) indices. The rotation properties of
vectors in 3-D are not the subject of this discussion and are defined in standard advanced
classical physics texts books such as Goldstein.

Parity inverts all the components of a polar vector, such that:

                            P a = −ax ,−a y ,−az  = −a1,−a2,−a3

The dot-product of two vectors is defined as:
                 
   a⋅b = ax bx  a y b y  az bz = a1 b1  a2 b2  a3 b3 = a i bi i=1,2,3

As seen at the last step we have used the Einstein convention under which repeated
indices indicate summation. The dot-product is invariant under rotation and parity
transformations. Hence, it is a scalar.

To define the cross product we first need to define the Levy-Civita tensor:

           ijk = 1 if (i,j,k) = (1,2,3) or (2,3,1) or (3,1,2) (even permutations)

           ijk = −1 if (i,j,k) = (2,1,3) or (3,2,1) or (1,3,2) (odd permutations)

           ijk = 0    if any indices are the same.

The cross product is normally defined as:

                  a×b = a y bz−az b y x  az bx−ax bz y  ax b y−a y bx z

where x , y , z are the unit vectors in the x, y, z directions. 
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This definition translated to tensor notation reads as:

                                             a×bi = ijk a j bk

where the index i indicates the ith component of the cross product. It is well know that the
cross product transforms as a vector under rotations. However, under parity it does not
change sign like a vector. Hence, it is called axial vector.

The quantity:
                                                 c⋅a×b = c iijk a j bk

as a dot product remains invariant under rotations. However, it changes sign under
parity hence it is called pseudoscalar. 

Two examples are presented to demonstrate how powerful is the tensor notation:

Example 1:  Show that  ∇⋅ ∇×A = 0

                    ∇⋅ ∇×A = ∂i ijk∂ j Ak = ijk∂i∂ j Ak = 0

The last step results from the summation an antisymmetric tensor, ijk , with a
symmetric one, ∂i∂ j .

Example 2: Show that ∇× ∇×A = ∇  ∇⋅A− ∇ 2 A

[ ∇× ∇×A]i = ijk∂ j  ∇×Ak = ijk∂ j klm∂l Am = ijkklm∂ j∂l Am  (1)

  Using the identity:

                                  ijkklm = il jm−i m jl                                                (2)
we have:

    12 ⇒ [ ∇× ∇×A]i = ijkklm∂ j∂l Am = il jm−i m jl ∂ j∂l Am ⇒

   [ ∇× ∇×A]i = ∂i ∂l Al −∂ j∂ j Ai = ∇  ∇⋅A− ∇ 2 A
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Introduction to the Covariant Notation:

All  of  the  ideas  and  equations  presented  in  this  course  are  in  the  Lorentz  invariant
(relativistic invariant) notation usually referred also as covariant notation. This is for two
reasons: 

● The first reason addresses the need of relativistic invariant theories. One of the most
fundamental principles in physics is the fact that all equations and subsequently their
predictions  should  be  invariant  with  respect  to  the  frame of  reference.  Otherwise
physics would not be an objective science. 

● The second reason is a practical one but no less important and it addresses the need for
using special relativity in High Energy Physics (HEP): At the energies that the HEP
deals most particles have velocities approaching the velocity of light so they need to be
treated according to the formulae of the Special Relativity. So we start by introducing
the covariant notation and the Lorentz transformations within this notation:

Every point in space-time can be represented by a contravariant 4-vector defined as: 

                                   x =  x0 ; x  = ct ; x              (1) 

The vector index in (1) is  running between  = 0, 1, 2, 3  and the 4-vector is
defined explicitly as:

                                    x =  x0 ; x1 , x2 , x3 = ct ; x , y , z 

where  t  is  the time and  x, y, z are the three space coordinates.  Greek indices denote
always space-time variables whilst latin indices denote always 3-dimensional variables. A
more rigorous definition of a 4-vector in terms of its transformation properties will be
given later once the Lorentz transformation has been defined in covariant notation. 

Define to dot-product of two contravariant vectors to be the matrix product:

                                         x⋅y = x g y                              (2)

where :                             g = 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

             (3) 
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is  the  metric  tensor  of  a  flat  Minkowski  space.  Several  books including Perkins  use
several  different metric definitions. The end result does not of course change but it does
create confusion. The definition in (3) is the most popular in HEP and Relativity books
and this is what we will follow  throughout this course.

It is worth noticing that:
.
(1)We have used the Einstein convention where two indices that are the same indicate

summation. This of course implies that in a given expression one cannot have more
than 2 indices which are the same. Sometimes we refer to this summation as index
contraction  because  the  summed  indices  disappear  at  the  end.  This  is  also  why
summed indices can be re-named at wish: Since they disappear you can change the
index to whatever symbol is convenient for the calculation.

(2)The metric indices are subscripts in this case whilst the contravariant vector indices are
always superscripts. This is not an accident will become clear later why we do that.

In a more explicit way the definitions (2) (3) mean that:

     x⋅y = x g y =  x0 x1 x2 x31 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 y0

y1

y2

y3 = x0 y0−x⋅y

 Using the definitions the dot-product of a 4-vector with itself is:

                                123 ⇒ x⋅x =  x02−x2 = ct 2−x2 . 

Hence  the  dot-product  of  a  4-vector  with  itself  is  a  relativistic  invariant  since  a
spherical light wave should look spherical in every coordinate frame. It will be shown
later that the dot-product of any 4-vectors is relativistic invariant.

Although  we  can  do  all  of  calculations  using  contravariant  vectors  we  will  need  to
include always the metric when we need to take dot-products. This is inconvenient and
this is why we need to introduce the covariant vectors:

A covariant vector is defined as:

                                      x =  x0 ;−x  = ct ;−x  .               (4)

Notice that except the space vector sign which is negative we have also changed the
4-vector index from superscript to subscript. 
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Covariant tensors are always associated with subscripts in this notation. The dot-product
can now be defined from the covariant and contravariant vectors without the explicit use
of the metric as:

                                    x⋅x = x x = ct 2−x2 = g x x       (5)

Equations (4) and (5) imply that:

                                                     x = g x

As seen here the metric can be used to lower an index and convert a contravariant
vector to a covariant vector. The opposite is also true if one defines the metric to be the
same for both covariant and contravariant indices:

                                                     g = g  

and in this case the metric can be used to rise an index:

                                                     x = g x

and convert a covariant 4-vector to a contravariant 4-vector.

In this notation one can define the Kroneker delta as:

                                             
 =g g = 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


Since  it must be that 

                                                         
 = ∂ x

∂ x

we are driven to the convention where contravariant indices in the denominator become
covariant indices in the numerator and visa versa. This can be seen also in the case where

                                                        g = ∂ x

∂ x
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Clearly in this notation we have that g g = 4 .

Contravariant and covariant derivatives are then defined as:

                                           ∂ = ∂
∂ x =  ∂

∂ x0 ;∇

and 

                                           ∂ = ∂
∂ x

=  ∂
∂ x0 ;−∇

Lorentz Transformations

Our definition of a contravariant 4-vector in (1) whist easy to understand is not the whole
story. A contravariant 4-vector is an object defined as x =  x0 ; x  that transforms
as a vector under Lorentz transformations. That is:

                                                       x' =  
 x                      (6)

where  x is the 4-vector in a frame  O  and  x' a  4-vector in the reference frame  O'
related  by the  Lorentz  transformation   

 .  The  matrix   
 is  in  the  general  case a

complex  object  which  can  represent  a  mixture  of  Lorentz  boosts  and  3-D rotations.
However,  in  the  case  of  a  pure  Lorentz  boost   by   =  x0 = v /c x0 in  the  x-
direction, it assumes a form which is familiar from special relativity texts which can be
written as:

                                     
 =   − 0 0

−  0 0
0 0 1 0
0 0 0 1

                      (7)

where v is the relative velocity of the frame O' with respect to O.
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 67 ⇒ x' =  x0'

x1'

x2'

x3' =   − 0 0
−  0 0

0 0 1 0
0 0 0 1

 x0

x1

x2

x3 ⇒

                                     x0' =  x0−⋅x 
                                     x1' =  x1−⋅x0                                     (8)
                                     x2' = x2

                                     x2' = x2

The four equations in (8) represent a Lorentz boost for  =  x0 .

Now that the general form of a Lorentz transformation has been defined under (6) we can
investigate  the consequences of the relativity constraint namely that the product of a
4-vector with itself must be  a Lorentz invariant:

              x ' ⋅ x ' = g x ' x ' = g 
 x 

 x ⇒

              x ' ⋅ x ' =  g 
  

  x x = x⋅x ⇒  g 
  

  = g ⇒

                
  = g ⇒ g g =  

  g ⇒

                                            
 

 = 
                              (9)

This is a basic property of the Lorentz transformations. It is as simple exercise to show
that (7) is consistent with (9).

Now we are ready to show that the product of any two 4 vectors is a Lorentz invariant
quantity:

89 ⇒ x ' ⋅ y ' = x ' y ' = x ' y ' g =  
 x 

 y g ⇒

x ' ⋅ y ' =  
  

 g x y =  
  x y =  

 
 x y ⇒

                               x ' ⋅ y ' = 
 x y = x⋅y
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Hence, the dot-product of any 4-vectors is a relativistic invariant.  Notice that this is
always the product of a covariant with a contravariant 4-vector.  So when we contract
covariant with contravariant indices the results of the summation is always going to be a
Lorentz invariant quantity which is what we usually want to have in physics. It is for this
reason that when we use Einstein's convention to sum over indices we always have two
same indices but one is covariant and the other contravariant. 

Next we can calculate the inverse boost of (6), −1 
 . We  start with (9) and multiply

both sides by −1 
 :

             
 

 = 
 ⇒  

 −1 
 

 = 
 −1 

 = −1 
    (10)

However since −1 
 is the inverse we have that:

                                              
 −1 

 =  
                                         (11)

                                   
 

 = −1 
 ⇒ 

 = −1 
                   (12)

The Lorentz transformation for vectors (6) can be extended for rank-2 tensors. Hence, a
rank-2 tensor is an object that under Lorentz transformations transforms as:

                                           T  ' =  
  

 T                                        (13)

It is then easy to show that the sum:

                                              T  x x                                                       (14)

is a Lorentz invariant quantity if T  transforms according to (13) and x , x transform
according to (6). Obviously (13) can be extended to any rank-n tensor. In that case we
have from (14)  that  any quantity where  all  the  indices  have  been summed up (fully
contracted indices) will be a relativistic/Lorentz invariant.
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Parity transformation properties of 4-vectors:

In a similar way as in the 3-D case, a combination of the Lorentz and Parity properties
can be used to classify the various fields and currents we use in Particle Physics as
follows:

• Quantities which are invariant under Lorentz transformations are called scalars
(S) if they are even under parity. If they are odd under parity they are called
pseudo-scalars (P). 

• Similarly, by definition, the 4-vectors which transform under parity as:     
             
                                    V =V 0 ; V V P

=V 0 ;−V 

      are commonly referred to as polar  4-vectors (V).

• Finally, the category of Lorentz vectors which transform under parity as:

                                          A=A0 ; A AP
=−A0 ; A

            are called axial 4-vectors (A).
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Maxwell’s Equations in Covariant Notation

One can see how powerful can be the covariant notation by writing Maxwell's equations
in a  covariant form. Start with Maxwell's equations in the standard 3D notation:

                                                   ∇⋅E = 4                     
      
                                                   ∇⋅B = 0  

                                                   ∇×E = − 1
c
 ∂

B
∂ t

          

                                                    ∇×B =
4
c

J 1
c
 ∂

E
∂ t

Define the electromagnetic 4-vector potential and 4 vector current to be

                                         A =  ; A      J  =  ; J                                (15)

where  , A  are the electromagnetic scalar and vector potential and  , J  are the charge
and current densities. The Electromagnetic Field tensor can be defined as a function of
the 4-vector potential as:

                                               F  = ∂ A−∂ A                                           (16)

which in terms of the electric and magnetic fields can be written as:

                                   F  =  0 −E x −E y −E z

E x 0 −Bz B y

E y Bz 0 −Bx

E z −B y Bx 0                                 (17)

The field tensor can also be written as:

                        F  = g g F  =  0 E x E y E z

−E x 0 −Bz B y

−E y Bz 0 −Bx

−E z −B y Bx 0              (18)
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Another form of the field tensor the dual,  F   , can be defined by:

                                                 F  = 1
2
 F                                 (19)

where   is defined to be :  =  zero if any indices are the same, -1 for odd
permutations and +1 for even permutations of the indices.

Using (15)(16)(17)(18)(19) the four Maxwell Equation can be written as two covariant
equations:

                                                        ∂ F  =
4
c

J                                (20)

                                                         ∂
F  = 0                                       (21)

The first one corresponds to the first and the fourth Maxwell equations which contain
sources and the second one corresponds to the other two.
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