Particle Physics Homework Assignment 8

Dr. Costas Foudas 12/3/07

Problem 1: Consider an experiment where negative pions, π^{-}, at rest are being captured by a Hydrogen nuclei.

1) Draw conclusions about the spin of the π^{-}given that the experiment observed the reaction $\pi^{-} \boldsymbol{p} \rightarrow \boldsymbol{n} \gamma$.
2) Can the reaction $\pi^{-} \boldsymbol{p} \rightarrow \boldsymbol{n}$ occur if the initial state proton is free (not bound in a nucleus)?
3) Draw conclusions about the parity of the π^{0} and π^{-}given that the experiment observed the reaction $\boldsymbol{\pi}^{-} \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{0}$
4) Draw conclusions about the π^{0} spin provided that it decays into two photons: $\pi^{0} \rightarrow \gamma \gamma$.
(Justify all your answers)

Problem 2: The ρ^{0} is a vector boson, that is an $\mathbf{1}^{-}$state. Explain why the decay $\rho^{0} \rightarrow \pi^{+} \pi^{-} \quad$ is allowed and why the decay $\rho^{0} \rightarrow \pi^{0} \pi^{0}$ is forbidden.

Problem 3: The η meson is a $\mathbf{0}^{-}$state. Explain why the decay $\eta \rightarrow \pi^{-} \pi^{+}$is forbidden whilst the decay $\eta \rightarrow \pi^{-} \pi^{ \pm} \pi^{0}$ is allowed via the electromagnetic interaction.

