Particle Physics Homework Assignment 5

Dr. Costas Foudas 12/2/07

Problem 1: As shown in class the Dirac matrices must satisfy the anti-commutator relationships:

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=\mathbf{2} \delta_{i j}, \quad\left\{\alpha_{i}, \beta\right\}=\mathbf{0} \quad \text { with } \quad \beta^{2}=\mathbf{1}
$$

I. Show that the α_{i}, β are Hermitian, traceless matrices with eigenvalues $\pm \mathbf{1}$ and even dimensionality.
II. Show that, as long as the mass term is not zero and the matrix β is needed, there is no 2×2 set of matrices that satisfy all the above relationships. Hence, the Dirac matrices must be of dimension 4 or higher. First show that the set of matrices $(\mathbf{1} ; \vec{\sigma})$ can be used to express any $\mathbf{2} \times \mathbf{2}$ matrix. That is the coefficients $\boldsymbol{c}_{\mathbf{0}}, \boldsymbol{c}_{\boldsymbol{i}}$ always exist such that any $\mathbf{2} \times \mathbf{2}$ matrix can be written as:

$$
\left(\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{B} \tag{1}\\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right)=c_{0} \mathbf{1}+c_{i} \sigma_{i}
$$

Having shown this you can pick and intelligent choice for the α_{i} in terms of the Pauli matrices, for example $\alpha_{i}=\sigma_{i}$ which automatically obeys $\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}$, and express β in terms of $(\mathbf{1} ; \vec{\sigma})$ using (1). Show then that there is no $\mathbf{2} \times \mathbf{2}$ β matrix that satisfies $\left\{\alpha_{i}, \beta\right\}=\mathbf{0}$.

Problem 2:

I. Show that the Weyl matrices:

$$
\vec{\alpha}=\left(\begin{array}{cc}
-\vec{\sigma} & \mathbf{0} \\
\mathbf{0} & \vec{\sigma}
\end{array}\right) \quad \beta=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right)
$$

satisfy all the Dirac conditions of Problem 1. Hence, they form just another representation of the Dirac matrices, the Weyl representation, which is different than the standard Pauli-Dirac representation.
II. Show the the Dirac matrices in the Weyl representation are

$$
\vec{\gamma}=\left(\begin{array}{cc}
\mathbf{0} & \vec{\sigma} \\
-\vec{\sigma} & \mathbf{0}
\end{array}\right) \quad \gamma^{0}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right)
$$

III. Show that in the Weyl representation $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}-\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$
IV. Solve the Dirac equation $[\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{p}}+\beta \boldsymbol{m}] \Psi=\boldsymbol{E} \Psi$ in the particle rest frame using the Weyl representation.
V. Compute the result of the chirality operators $\frac{\left(1 \pm \gamma_{5}\right)}{2}$ when they are acting on the Dirac solutions in the Weyl representation.

Problem 3: Use the Dirac Hamiltonian in the standard Pauli-Dirac representation,

$$
\boldsymbol{H}=\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{p}}+\beta \boldsymbol{m}
$$

to compute $[\boldsymbol{H}, \hat{\boldsymbol{L}}]$ and $[\boldsymbol{H}, \hat{\Sigma}]$ and show that they are not zero.
Use the results to show that:

$$
\left[\boldsymbol{H}, \hat{L}+\left(\frac{\mathbf{1}}{\mathbf{2}}\right) \hat{\Sigma}\right]=\mathbf{0}
$$

where the components of the angular momentum operator is given by:

$$
\hat{\boldsymbol{L}}_{i}=\epsilon_{i j k} \hat{x}_{j} \hat{\boldsymbol{p}}_{\boldsymbol{k}}
$$

and the components of the spin operator are given by:

$$
\hat{\Sigma}_{i}=\left(\begin{array}{cc}
\sigma^{i} & \mathbf{0} \\
\mathbf{0} & \sigma^{i}
\end{array}\right)
$$

Recall that the Pauli matrices satisfy $\sigma^{i} \sigma^{j}=\delta^{i j}+\boldsymbol{i} \epsilon^{i j k} \sigma^{\boldsymbol{k}}$

