Particle Physics Homework Assignment 2

Dr. Costas Foudas January 07

Problem 1: Show that $g_{\mu \nu} \boldsymbol{g}^{\mu \nu}=4$.

Problem 2: Show explicitly that $\Lambda_{\alpha}^{\mu} \Lambda_{\mu}{ }^{\beta}=\delta_{\alpha}{ }^{\beta}$. Use a Lorentz boost in the x-direction $\left(\vec{\beta}=\frac{v}{c} \hat{x}_{0}\right)$ in the place of Λ_{v}^{μ}.

Problem 3: Show that the expression $\boldsymbol{T}^{\alpha \beta} \boldsymbol{x}_{\alpha} \boldsymbol{y}_{\beta}$ is a Lorentz invariant provided that $\boldsymbol{T}^{\alpha \beta}$ transforms as a rank-2 tensor and $\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\beta}$ transform as covariant vectors.

Problem 4: Show that the 4-derivatives $\frac{\partial}{\partial \boldsymbol{x}^{\mu}}$ and $\frac{\partial}{\partial \boldsymbol{x}_{\mu}}$ transform as Lorentz covariant and contravariant vectors respectively.

Problem 5: This was asked in the 2006 final exam as part of one of the problems.

1) Write own the definition of a parity transformation.
2) Consider two Lorentz 4 -vectors: \boldsymbol{X}^{μ} and $\boldsymbol{Y}^{\mu} . \quad \boldsymbol{X}^{\mu}$ transforms as a polar vector, and \boldsymbol{Y}^{μ} as an axial vector. How do they transform under parity?
3) Which of the following quantities is invariant under parity and which is not:

$$
\text { (a) } \boldsymbol{X}^{\mu} \boldsymbol{X}_{\mu}\left(\text { b) } \boldsymbol{Y}^{\mu} \boldsymbol{Y}_{\mu}(\boldsymbol{c})\left(\boldsymbol{X}^{\mu}-\boldsymbol{Y}^{\mu}\right) \cdot\left(\boldsymbol{X}_{\mu}-\boldsymbol{Y}_{\mu}\right)\right.
$$

Problem 6:

1) Using Maxwell's equation in three dimensions show that the Electric Field, $\overrightarrow{\boldsymbol{E}}$, is a vector and the magnetic field, $\overrightarrow{\boldsymbol{B}}$, an axial vector.
2) As one can see, Maxwell's equations are not completely symmetric because although they include an electric charge density, ρ_{e}, and an electric current density, $\overrightarrow{\boldsymbol{J}}_{e}$, the equivalent magnetic quantities, $\rho_{\boldsymbol{m}}, \quad \overrightarrow{\boldsymbol{J}}_{\boldsymbol{m}}$, are absent indicating that there are no magnetic monopols. Introduce magnetic monopols and write down the completely symmetric Maxwell equations. Show that ρ_{m} must be a pseudoscalar and $\vec{J}_{\boldsymbol{m}}$ an axial vector.
