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Helicity and Chirality

Helicity: As we have seen before the helicity operator is defined as:

                                             ⋅p =  ⋅p 0
0 ⋅p                          (1)

where   = 1 ,2 ,3 are the  2 x 2 Pauli matrices and p = p /∣p∣ is the unit
vector  at  the direction of the momentum of a particle.  As seen from (1) the  helicity
represents the projection of the particle spin at the direction of motion. It is easy to
show that the helicity operator commutes with the Dirac hamiltonian:

                                             [ ⋅p , H ] = 0                                   (2)         

Hence,  because  of  (2)  the  Dirac  hamiltonian  and helicity  have a common set  of
eigenvectors. This is also the reason for the two-fold degeneracy found for every
energy  eigenstate  of  the  Dirac  hamiltonian.  It  is  easy to  show explicitly that  the
solutions of the Dirac equation are indeed eigenvectors of the helicity operator:

Consider the first two positive solutions of the Dirac Equation: 

                                        1,2 x  = N  1
 ⋅p
Em±e−ip x

by applying the helicity operator we have:

                

                      ⋅p1,2 x  = N  ⋅p 0
0 ⋅p 1

 ⋅p
Em±e−ip x ⇒
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      ⋅p1,2 x  = N  ⋅p

⋅p  ⋅p
Em±e−ip x = N  1

 ⋅p
Em ⋅p±e−ip x ⇒

     

       ⋅p1,2 x  = N  1
 ⋅p
Em ±±e−ip x = ±N  1

 ⋅p
Em±e−ip x ⇒

                                         ⋅p1,2 x  = ±1,2 x 

Hence, we have shown that the eigenvectors  of the Dirac hamiltonian are also
eigenvectors of the helicity operator. In the last step we have used the relationship
⋅p± = ±±  which can easily be proven by selecting the unit vector at the direction

of the z-axis.

 It is important to notice that the Dirac solutions are eigenvectors of the helicity operator
and in general not eigenvectors of the spin operator:

                                                   =   0
0 

except in the case where the momentum is zero. Why should they be anyway ? The spin
operator does not commute with the hamiltonian as we have seen before.

Therefore the helicity operator has the following properties:

(a)  Helicity is a good quantum number: The helicity is conserved always because it
commutes with the Hamiltonian. That is, its value does not change with time within a
given reference  frame.  As  we have  seen  before (2)  is  valid  for  both  massive  and
massless  fermions.  Hence,  helicity  is  conserved  for  both  massive  and  massless
particles.

(b) Helicity is not Lorentz invariant: This is obvious since helicity is a product of a 3-
vector with an axial vector.
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Chirality or Handedness:

Consider now the chirality/handedness operator in the Pauli-Dirac representation:

                                             5 = i 0123 = 0 I
I 0

which satisfies:

                                              {5,
 } = 0  

This anti-commutation relationship is true in any Dirac matrix representation. Lets
evaluate the commutator of the chirality operator with the Dirac hamiltonian:

   [5 , H ] = [5 ,⋅pm] = 0 I
I 0 m ⋅p

⋅p −m− m ⋅p
⋅p −m0 I

I 0 ⇒

                       [5 , H ] =  ⋅p −m
m ⋅p− ⋅p m

−m ⋅p ⇒

                                         [5 , H ] = 2m0 −I
I 0 

So the chirality/handedness operator does not commute with the hamiltonian unless if the
mass is zero.  Hence, although we don't know yet the physical observable which is
associated with this operator we do know that it is conserved and corresponds to a
good quantum number only if the mass is zero or can be neglected. 

Exercise 1:  Consider the Dirac Hamiltonian for massless fermions H = ⋅p . Use
the anti-commutation relationships {5,

 } = 0 which are valid in any representation
of the Dirac matrices to show that the result [5 , H ] = 0 is true in any representation
provided that the mass is zero.

      Advanced Particle Physics, 4th year Physics, Imperial College, 
                            Lecturer: Dr. C. Foudas

3



Draft write-up: Lecture 7                                                                                           

Solution:    [H ,5] = [0i pi ,5] = pi {0[i ,5][0,5]
i } ⇒

       [H ,5] = [0i pi ,5] = pi {0i5−5
i 05−5

0i } ⇒

       [H ,5] = [0i pi ,5] = pi {0i55
i−055

0i } ⇒

                                                      [H ,5] = 0

If you try adding a mass term you get :

                    [H ,5] = [⋅pm0 ,5] = m05−5
0=−2m5

0

Exercise  2: Show  explicitly  that  for  massless  fermions  the  chirality  and  the  Dirac
hamiltonian  have  a  common  set  of  eigenfunctions  which  is  expected  because  they
commute.

Solution: This is easy to show: The eigenvectors of 5 are ± = C  1
±1 with

eigenvalues ±1 respectively.

Consider the positive energy solutions of the Dirac Equation:

                                   1,2 x  = N  1
 ⋅p
Em±e−ip x

If the mass is zero we have that:

                        1,2 x  = N  1
 ⋅p±e−ip x = N  1

±1±e−ip x

which is also an eigenfunction of the chirality operator.
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Exercise 3:  Show that for massless fermions if  is a solution of the Dirac equation
then 5 is also a solution of the same equation.

Solution:  The Dirac equation,
                                   

                                       [ i ∂−m] x  = 0   

for massless fermions becomes:  

                                             i ∂ x  = 0 .    

Using  {5,
} = 0  we get:

                                            i ∂ 5 x  = 0

Lets now investigate the physical meaning of the chirality. Consider the massless Dirac
equation:

                                          i ∂ x  = 0

Let   x  = u  pe−ip
 x  be a solution of the Dirac equation. By substituting we get

that:

                           0 p0−⋅pu  p = 0 ⇒

                            0 p0u  p = ⋅pu  p ⇒

                            5
00 p0u  p = 5

0⋅pu  p ⇒

                            p05u  p = 5
0⋅pu  p                           (3)
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If this is a positive energy solution then we have that p00 and (3) becomes:

                                    5u  p = 5
0⋅pu  p                       (4) 

If this is a negative solution then, p00 and 

                                    5u  p = −5
0⋅pu  p                   (5)

Lets compute the matrix product on the right side:

                    5
0 = 0 I

I 0 I 0
0 −I  0 

− 0 =   0
0  =  ⇒

     
                                                 = 5

0                                (6)

and this is the definition of the spin operator in terms of the gamma matrices valid in
any representation.  From (4) (5) and (6) we have that for: 

           p00 ⇒       5u  p =  ⋅p 0
0 ⋅pu  p = ⋅pu  p   (7)

and

           p00 ⇒  5u  p = − ⋅p 0
0 ⋅pu  p = −⋅pu  p  (8)

Using (7) and the fact that the Dirac spinors are eigenvectors of the helicity operator i.e.

                                                  [ ⋅p ]u  p = ±u  p

we conclude that when acting on  positive energy solutions the operators:
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                                          P L=
1−5

2
=

1−⋅p
2

and 

                                            P R=
15

2
=

1⋅p
2

project to negative and positive helicity states respectively.  Equivalently, using (8), when
the above operators act on negative energy solutions  they project to positive and negative
helicity states respectively. Hence, we have the physical interpretation for the chirality
operator:  The chirality or handedness is the same as the helicity operator when the
particle  mass  is  zero  or  it  can  be  neglected.  The  operators P L and P R are
commonly referred as left handed and right handed projection operators.

Projection Operator Summary:

In general if  is a positive energy spinor and − is a negative energy spinor we
have that:

                                
15

2
± = N

2 1
11±⋅ps

                                
1−5

2
± = ± N

2  1
−11∓⋅ps

In the above relations we have changed the notation for the two dimensional spinors from
± to s so that the ± spin sign is not  confused with the the positive/negative

energy ± sign. As before s = 1
0 , 0

1 for s = 0,1.
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Conclusions on Chirality or Handedness: 

For massless particles the chirality or handedness operator has the following properties:

(a)  It is Lorentz invariant. 
(b)  It is conserved. 
(c)  It has a common set of eigenvectors with the Dirac Hamiltonian.
(d)  It has the same properties with the Helicity operator. Which  gives it a physical

meaning.

Helicity and Chirality for massive particles:

So far we considered chirality/handedness for massless fermions. However, the chirality
properties of massive fermions are also of interest. The reason for this is that the charged
current weak interaction couples to  left handed (negative chirality) particle spinors and
right handed  (postitive chirality) anti-particle spinors. Hence, we need a way to associate
left handed and right handed spinors with positive an negative helicity states.

Consider the identity:

           1−
 p
EM

= 1
2
1− ∣p∣

EM
1⋅p1

2
1 ∣p∣

EM
1−⋅p    (9)

where E , M , p are the energy, mass and momentum of a fermion respectively.

Next consider a  left handed operator acting on a positive Dirac solution:

    L =
1−5

2
 x  = N

2 1 −1
−1 1 1

 ⋅p
Em±e−ip x ⇒     

    L = N
2 1

−11−
⋅p
Em±e−ip x  and using (9) we get that:
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   L = N
2 1

−1[ 1
2
1− ∣p∣

EM
1⋅p1

2
1 ∣p∣

EM
1−⋅p]±e−ip x (10)

The first term in (10) projects to positive helicity states and the second term to negative
helicity states.  However,  the coefficient  of the positive helicity term vanishes at  high
energies where the particle mass can be neglected while the coefficient of the negative
helicity term approaches the value of one at high energies.

One can show that at energies much larger than the particle mass these coefficients
become:

1− ∣p∣
EM

=1−E2−M 2

EM 
=1−1−M 2/E2

1M /E 
=1−1− M 2

2E2..1−M
E

.. ⇒

                                         1− ∣p∣
EM

 ≈ M
E   to order of M/E.

and 

1 ∣p∣
EM

=1E2−M 2

EM 
=11−M 2/E2

1M /E 
=11− M 2

2E2..1−M
E

.. ⇒

                                      1 ∣p∣
EM

 ≈ 2−M
E  to order of M/E.

Hence, 

              L ≈ N
2 1

−1[ M2E 1⋅p1− M
2E

1−⋅p]±e−ip x
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Therefore the left handed operator acting on positive energy states of the Dirac equation
gives:

L =
1−5

2
 x  ≈ N

2 1
−1[ M2E 1⋅p1− M

2E
1−⋅p]±e−ip x

As seen here the left handed positive energy spinor has contributions from both positive
and negative helicity components. However the negative helicity component is dominant
and becomes 100% in the case where the mass is much smaller than the energy and can
be neglected. The positive helicity component decreases ~ M /E  and approaches
zero as the energy increases.
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