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Relativistic Quantum Mechanics 

During the early part of the last century Schrödinger’s equation was used to explain and
describe all phenomena in atomic physics. However, after the development of the theory
of special relativity by Einstein in 1905, there was a need to unify quantum mechanics
and special relativity in to a single Relativistic Quantum Theory. Despite the success of
Schrödinger’s equation in describing quite accurately the Hydrogen spectrum and giving
correct predictions for a large amount of spectral data, this equation is not invariant under
Lorenz transformations. In other words Schrödinger’s equation is not relativistic and is
only  an  approximation  valid  at  the  non-relativistic  limit  when  the  velocities  of  the
particles involved are much smaller than the speed of light. The reason that Schrödinger’s
equation is not relativistic is simple. Consider the Schrödinger equation:

                                  
[−

ℏ2

2 m
∇ 2V  x , t ]=i ℏ

∂
∂ t

and consider also a Lorenz boost from the Lab frame (un-primed) to a frame with  β = v/c
and γ=1/√(1- β2) moving at the positive x-direction (primed), where v is the velocity of
the moving frame and c is the speed of light in vacuum:

                                                 x0 '= x0−⋅x 

                                                 x par
' = x par−∣∣⋅x0

                                                 x per
' =x per

The space derivative appears at the second order in Schrödinger’s equation while the time
derivative at first order. However, since space and time are treated equivalently in special
relativity,  the  time  and  space  variables  appear  at  first  order  (linear)  in  the  Lorenz
transformations.  This  difference  between  the  Schrödinger’s  equation  and  the  Lorenz
transformation  renters  Schrödinger’s  equation  non-invariant  under  Lorenz
transformations that is non-relativistic.

Another way of seeing this is to replace the operators in Schrödinger’s equation with the
corresponding physical observables that is:

                                                 p2 /2 mV =E

Clearly  this  equation  is  not  relativistic  since  we  know  that  the  correct  relativistic
relationship that connects energy mass and momentum is:

                                                 E2= p2m2
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The Klein-Gordon Equation.

The obvious way of creating a manifestly invariant wave equation is to start from the well
known  relativistic  energy  equation  and  replace  all  quantities  involved  with  the
corresponding Quantum Mechanical operators. After doing this  and you get:

[ ∂
∂ x0 

2
−∇2m2 c2

ℏ2 ]=0

This is the Klein-Gordon equation which describes spin zero massive particles. As  we
have  seen  before  if  these  particles  have  also  positive  intrinsic  parity they are  called
scalars, and if they have negative intrinsic parity they are called pseudoscalars. Often the
particle properties are  described by the symbol J P  where J  is the spin of the particle
and P is the parity. In this notation scalars are 0+  and pseudoscalars are 0- .

It is convenient to work in the system where ℏ = c = 1 and we will assume this for
the rest of these course unless otherwise stated. In this system the Klein-Gordon equation
becomes:

[∂/∂ x02−∇ 2m2]=0

which in covariant notation can be written as:

[∂∂m2]=0

This equation is manifestly covariant since the derivative product is covariant as a dot
product of 4-vectors and the mass square term is also covariant because it is the result of
the product of two momentum 4-vectors. 

Perhaps it is a good idea to discuss what exactly do we mean by saying that the equation
is covariant since it is the first time we confront this issue in this course:

Consider a spin zero particle moving in free space. An observer in reference frame  O
makes measurements and finds that the particle is described by the wave function  x 
which satisfies the Klein Gordon equation expressed in his frame as:

                                            [ ∂
∂ x

∂
xm2] x  = 0          (1) 
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Consider a  second observer is in a frame O' which is related to O by the Lorentz
transformation:
   

                        x ' =  
 x  or  x = −1 

 x '                    (2)

who also observes the same particle.

The two observers see each other moving and therefore they know that their coordinate
measurements are related via the above Lorentz Transformation. The observer in O can
use the Lorentz transformation in (2) and translate his equation to the O' frame. Hence,
he can predict what the other observer in O'  should be 'seeing'. The observer in O' also
makes  measurements  and  concludes  that  the  particle  is  described  by   '  x '  which
satisfies  a  given  equation  in  his  frame  expressed  in  terms  of  the  x '  coordinates.
Obviously for the entire picture of events to be objective and independent upon the choice
of the observer, it must be that the equation in the O'  frame must be identical to the one
that the observer in  O predicts by translating his own equation in the  O'  frame. If that
happens  to  be  the  case  then  we  say  that  an  equation  is  invariant  under  Lorentz
transformations. Alternatively stated: The relativity principle requires that the observed
physical phenomena are the same regardless of the frame of reference from which we
make our observations.  Hence,  it  requires that  the two equations  in the two different
frames must be the same. Lets see now under what conditions this is true:

The observer in O translates the equation (1) in the primed frame as follows: 

               1 ⇒ [−1 
 ∂
∂ x '

−1
 ∂
∂ x '

m2]−1 x '  = 0 ⇒

                              [ ∂
∂ x '


 ∂
∂ x '

m2]−1 x '  = 0 ⇒   

                               [ ∂
∂ x '

∂
∂ x '

m2]−1 x '  = 0        (3)

According to the relativity principle, equation (3) must be identical to the one 'seen' by
the observer in O' and given below by Eq. (4):

                                [ ∂
∂ x '

∂
∂ x '

m2] '  x '  = 0             (4)
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This is true if the wave function is invariant under Lorentz (Lorentz-scalar):

                               x  = −1 x '  =  '  x ' 

Using the same arguments for the Parity transformations where:

                            t  t ' = t ; x  x ' = −x

one finds that the Klein Gordon equation is invariant under Parity if:

                               ' x ' , t  = ei −x ' , t  = eix , t 

So the wave functions of particles that are scalars satisfy the Klein Gordon Equation.

Negative Energy and Negative Probability solutions of the 

Klein Gordon Equation

As we have shown so far we have succeeded in creating a relativistic invariant equation.
However, early enough it was noticed that there were two problems with this equation:

• It has both positive but also negative solutions.
• The negative solutions are associated with negative probability and this second

problem was beyond anything that could be accepted as a reasonable option at the
time.

To show this we write the Klein-Gordon Equation as : 

[∂0∂0−∇ 2m2]=0

This equation can be solved by substituting for =Aexp iEt−i p x   which gives us:

E2= p2m2⇒ E=± p2m2

This demonstrates that there are both positive and negative solutions.  This of course
means that any particle can decay to an infinite number of negative states and as it decays
and  loses  energy its  energy becomes  more  and  more  negative  in  a  process  that  the
equation above implies that its momentum grows to infinity.
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To show that the negative energy solutions are associated with negative probability we
first have to derive the continuity equation which will give us the probability density 
and the current density J .  To show this start with the complex conjugate of the Klein
Gordon equation multiplied by −i  from the left side

−i[∂0∂0−∇ 2m2]*=0 .

Consider also the symmetric equation where

i*[∂0∂0−∇ 2m2]=0 .

By adding the two equations the mass term drops out and we get:

i [*∂0∂0−∂0∂0
*]−i [*∇ 2−∇ 2*]=0

which of course can be written as:

i ∂0*∂0−∂0
*−i ∇ * ∇− ∇*=0

Hence, one now can identify:

=i *∂0−∂0
*               (1)

and

J=i * ∇− ∇*             (2)

which satisfy the continuity equation:                

                                            ∂0− ∇ J=0                         (3)

Note that (1) and (2) can be combined in one equation that describes and 4-vector current

                                        J  x  = i*∂−∂*

and using (3) we have:

                                             ∂ J   x  = 0    

which is the relativistic version of the continuity equation. 
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Now we have all the information we need to calculate the probability density. We use

=N exp i Et−p x 

which we have already shown that it satisfies the Klein-Gordon equation and compute the
probability density:

                                                        =2∣N∣2 E                   (4)

Hence, the negative energy solutions are associated with negative probability.  This
is clearly nonsenses.  At the time of its invention these two problems were considered
fatal and the equation was abandoned.

Note: The probability in (a) is not relativistic invariant and this is not a problem. Why
should it be anyway ? It should not be because it is the integral :

                               ∫ x dV = ∫ '  x ' dV '

that should be Lorentz invariant. As seen in (4) the probability density is proportional to
the  energy which  transforms  under  Lorentz  giving  a  factor  of    whilst  the  volume
element gives a factor of  1/  as expected from Lorentz contraction. The two factors
cancel each other and the integral remains Lorentz Invariant.

The Dirac Equation 

Dirac in his effort to discover an equation that was free of the problems seen with the
Klein  Gordon  equation  tried  an  equation  that  was  linear  in  the  energy,  mass  and
momentum. He tried the Hamiltonian:

             H = ⋅p  m = i pi  m   where H =E     (1) 

with i ,  being constant objects and E  the particle energy. Whatever these constants
might be the the equation must satisfy the relativistic energy equation:

                                                     E2= p2m2                                            (2)

      Advanced Particle Physics, 4th year Physics, Imperial College, 
                            Lecturer: Dr. C. Foudas

6



Draft write-up: Lecture 4 February 20th 2006                                                        

Hence,

 1 ⇒ H 2 = E2 ⇒ i pi  m j p j  m= p2m2 ⇒

 i pi j p j  m j p j  i pi m  2 m2= p2m2 ⇒

  1
2
 i  j   j i  pi p j  m  j j  p j  2 m2= p2m2 (3)

If (3) is to be satisfied then we must have that:

                1
2
i j   ji = ij ⇒ {i , j } = 2ij    (4)

                 j j  = 0 ⇒ { , j } = 0                     (5)

                2 = 1 and using (4)   i
2 = 1                            (6)

The  first  observation  is  that  with  the  constants   i ,  cannot  be  numbers  (numbers
commute do not anti-commute) so they must be matrices. It is left as homework to show
that these are matrices of even dimension, Hermitean and traceless whose dimension
is 4 or greater.

Several representations of the i ,  matrices exist which satisfy (4), (5), (6).

The standard Pauli-Dirac representation is given by:

                        =  0 
 0   and  =  I 0

0 −I 
The Weyl representation is  given by:

                       = − 0
0   and  = 0 I

I 0
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Where the 1 ;  are the 2 x 2 unity and the three Pauli matrices respectively. Hence,
the  i ,   are 4 x 4 matrices. Recall the the Pauli matrices satisfy:

           i j = ij  i ijkk ⇒ { i , j } = 2ij ; [ i , j ] = 2 i ijkk

From the  i ,  matrices we can define the matrices:

                            i = i i = 1,2,3   ;
                          
                            0 =  and 

                             5 = i 0123

  The gamma matrices can then be written in a covariant form as:

                               = 0 ; 

It is important to note here that although   looks like a 4-vector, it does not transform
as a 4-vector as will will see later on.

In the Pauli-Dirac representation we have that:

               =  0 
− 0 ;    0 =  I 0

0 −I  ;    5 = 0 I
I 0

In the Weyl representation we have that:

              =  0 
− 0 ; 0 = 0 I

I 0 ; 5 = −I 0
0 I 
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The Dirac Equation which in terms of the  i ,  matrices is given by:

                               ⋅p  m = E

can now be written in a more compact form using the gamma matrices:

                                        i ∂−m = 0                           (7)

For the reader who is not familiar with this notation it is perhaps useful to emphasize that
all these matrices are 4x4 objects which for example in the Dirac-Pauli (standard)
representation can be explicitly written as:

             0 = 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,          1 =  0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

  ,

            2 =  0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

  ,         3 =  0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,

            5 =  0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


Similarly the state   , is a 4 dimensional column object:   = 1

2

3

4

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One can also define the row object:

 = +0 = 1
* ,2

* ,3
* ,4

*1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = 1
* ,2

* ,−3
* ,−4

*

Next lets try to construct a probability density from the Dirac equation so that we  can
investigate if it suffers from the same negative probability problems as the Klein Gordon
equation:

By multiplying (7) by     we get:

                                              i ∂−m = 0              (8)

Also from (7) we have that [ i ∂−m]+ = 0 ⇒

                                             −i ∂
++−m+ = 0  (9)

However the gamma matrices have the property that:

                                              + = 00                    (10)

By substituting (10) in to (9) and multiplying from the right with 0 we get that:

                                            i ∂
m  = 0 ⇒

We can now multiply by  from the right side to obtain:

                                            i ∂
m  = 0      (11)

by adding (8) and (11) we get:

                                           i ∂i ∂
 = 0 ⇒
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                                                     ∂ i  = 0

Hence, there is a conserved current:

                                                    J  = 

which satisfies the continuity equation:

                                                     ∂ J  = 0

It will be shown later on that this is indeed a 4-vector current i.e. It transforms like a 4-
vector under Lorentz and Parity.  The components of the 4-vector current are given by:

                                         J  =  0 ; i =  ; J 

The probability density is then given by:

 = 0 = +00 = + = ∣1∣
2  ∣2∣

2  ∣3∣
2  ∣4∣

2  0

Hence,  the  Dirac  equation  leads  to  positive  probabilities.  So  this  solves  one  of  the
problems that the Klein Gordon equation had:

 The Dirac equation predicts positive probabilities for both positive and negative
energy states. 

However, as we will see in the next lecture the negative energy problem remains and
another solution (interpretation of it) had to be found.
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