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Relativistic  Kinematics

The Energy Momentum Vector 

In the previous lecture Lorentz transformations and covariant notation were reviewed.
The purpose of this lecture is to show the students how to compute the various kinematic
quantities, such as particle energies, angles and momenta, which are involved in particle
physics reactions. This is done by presenting some classical examples that can be found
in any textbook as well as by applying relativistic kinematics to demonstrate one of the
major puzzles in High Energy Particle Astrophysics today, the GZK limit. As we do this
we also remind the students the meaning of various quantities in particle physics such as
the lifetime, the decay width, branching ratio, spin and helicity. 

Last time we studied extensively the 4-vector:

                                         x =  x0 ; x  = ct ; x      

and how does it transform under Lorentz transformations. However, all 4-vectors have
the same transformation properties and whatever was stated about  x  it applies to any
other 4-vector. One of the 4-vectors that we will be using often in particle physics is the
energy-momentum 4-vector defined as:

  p =  p0 ; c p = E ; c p = E ; p = E ; p1 , p2 , p3 = E ; px , p y , pz  (1)

where the 0th component is the energy and the other three the momentum. This quantity
transforms as a vector under Lorentz and we will use this for our first example:

Example 1:  Consider particle with mass m moving with:        
             
                                                    =  x0 = v /c x0

                      at the x-direction. Let O' be the reference frame of the particle. In this frame
                      the particle momentum is p' = 0 and the energy  E '=mc2 . We want to 
                      compute the energy, E , and the momentum of this particle, p  in the   
                      lab frame.

So we want to apply the inverse boost from the particle frame (moving frame) to the Lab
frame:
                                                 p = −1 

 p ' ⇒

                    p0 =  p0 '  ⋅p '  ⇒ p0 = E = mc20 = m       (2)
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                    p  || =  p  || '  ∣∣⋅p0 '  ⇒ p  || = 0m = m            (3)   
                              
                    p⊥ = p⊥ ' = 0

In doing this we have shown the formulas you should know already from courses on
special relativity.

Two formulas that are used frequently in computing the boost of  the rest frame of
particle are:

                                          2 ⇒  = E
m

                                          32 ⇒  = p
E

where E , m , p are the energy, mass and and momentum of the particle as seen from
the lab frame of reference.

Also            2 ⇒ p2m2 = m2m2 = m212 = m22

   Hence,                                      E2 = p2m2                                                    (4)

Example 2:  Compute p⋅p  in any reference frame:

We know that the product p⋅p is a Lorentz invariant so the easiest thing to do is to
compute it in the particle rest frame where:

                                     p = m ; 0 ⇒ p⋅p = m2  

Of course one can also compute it in the lab frame  using (4) 

                                     p = E ; p ⇒ p⋅p = E2−p2 = m2
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Example 3:  Pion decay lifetime and decay length

                     Consider a E=14GeV  negative pion which decays in to a muon and a  
                     muon anti-neutrino: -  -  . If the pion mass is m- ≈ 140 MeV and
                     the pion lifetime is  ≈ 2.610−8 sec compute the lifetime of the pion in the
                     lab frame as well as its decay-length.

 First compute:                 = E
m

= 14×103 MeV
140 MeV

= 100

The time dilation formula from special relativity gives:

                                         t LAB =  = 100×2.6×10−8 = 2.6 sec

This can be converted to decay length using:

                                         l LAB = c = 780 m

Decay Rates, Life times and Branching Rations 

In the previous example we computed the decay length of the pion and found it to be
780m. This of course does not mean that after 780 m all pions will have decayed. It is
well known that particle decays follow the radioactive decay law which states that after
time, t, the number of particles that have survived is given by:
               

                                                 N  t  = N 0 e
−t
                                   (5)

where N 0  is the initial number of particles and  is the particle lifetime defined in the
particle rest frame. The effect of the interaction which causes the decay is hidden in the
computation  of  the  life  time.  This  is  what  can  be  calculated  using  the  theory  that
describes the particular decay. As was stated before the lifetime characterises in a sense
the type of interaction involved and its  coupling strength.  For example,  particles that
decay via the weak interaction have by far longer lifetimes than particles that decay via
the electromagnetic or the strong interaction.
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The decay width is defined as the inverse of the life-time and can be computed from the
initial and final states of the reaction:

                                     = 1


~ ∣< f ∣H INT∣i  >∣2

Where H INT is the interaction Hamiltonian which is responsible for the decay.

Consider  the case where  a particle decays to different final states via n-different decay
modes: f 1, f 2, f 3 , ... , f n . The total decay width can be computed as:

                                   TOT = 123....n

To understand the meaning of the decay width we differentiate (5) and we have that:

        dN  t 
dt

= N 0 e
−t
 −1 1


 = −N  t 


⇒ 1

N  t 
dN  t 

dt
= −1 1


 = −

Hence, the decay width is simply the decay rate per particle.

The branching ratio, Bi , for a particular decay mode, i ,  is defined as the percentage of
the particles decaying in this mode. Hence,

                                                 Bi =
 i

TOT
 

Two body decay of a pion

Consider again he decay of a pion to a muon and a muon anti-neutrino:

                                                       -  - 

We will use relativistic energy and momentum conservation to compute the energies and
momenta of the final state particles given that:                

                                   m ≈ 140 MeV , m ≈ 106 MeV , m ≈ 0 . 
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It will be shown later in the course that this decay is described by the Feynman diagram in
Figure 1. It is a decay the proceeds via the charged current weak interaction which is
mediated by a massive charged spin-1 particle, the W.

     
Figure 1: The Feynman diagram of a pion decaying to a muon and a muon anti-neutrino (left). Shown in
the right is the decay products of the pion  in the pion rest frame and in the laboratory frame.

Let:

               P = m ;0 ,      P = E ; P ,        P = E ; P   

be the energy momentum 4-vectors of the pion, muon and neutrino respectively in the
pion rest frame. The decay kinematics are shown in Fig.1 (right). The outgoing particles
are  back-to-back  in  the  pion  rest  frame  in  order  to  conserve  momentum.  Energy
momentum conservation demands that:

                                                  P = PP                                        (1)

Notice that the pion 4-vector is the simplest of all and any 4-vector dot-products that
involve this 4-vector are bound to be also simple. So we move the neutrino 4-vector to
the left side and square:

                                 1 ⇒ P−P
2 = P

2 ⇒

                                 P
2P

2−2 P P = m
2 ⇒

                                  P
2P

2−2 P⋅P = m
2 ⇒
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                                  m
20−2 m⋅E = m

2 ⇒

                                  E =
m

2−m
2

2 m

⇒

                                  E =
140 MeV 2−106 MeV 2

2×140 MeV
≈ 30 MeV

Having computed the energy of the neutrino it is easy to find the momentum since the
neutrino is  assumed to  be massless  ∣ P∣ = E ≈ 30 MeV .   However,  as shown in
Fig. 1. the neutrino and the muon are emitted back-to-back in the rest frame of the pion
and have momenta of equal magnitude because in this frame the initial particle, the pion,
has zero momentum. Therefore:

                                   P=− P ⇒ ∣ P∣ ≈ 30 MeV

The muon energy can then be computed as:

                                   E= P
2m

2 ≈ 3021062 MeV = 110 MeV

in the pion rest frame the muon has then an kinetic energy of:

                                  KE = 110 MeV−106 MeV = 4 MeV

 The conclusion is that the energies and momenta of the final state particles in a two body
decay are a function of the particle masses and have nothing to do with the nature of the
underlying interaction  the  causes  the  decay.  However,  this  fact  was  proven useful  in
determining that the pion decays via two body decay kinematics. 

As seen in Fig. 2 the outgoing muon from the pion decay has indeed fixed total energy
and fixed kinetic energy because all muon tracks have almost the same length. Muons
from stopped pions as they go through matter  lose energy via ionization and collisions at
an average rate  dE /dx . Hence, if they start with the same kinetic energy they will
always travel the same distance from the pion decay point up to the point that they stop
and decay themselves.  

Information  regarding  the  nature  of  the  interaction  itself  can  be  obtained  from  the
distributions of the decay products and the lifetime of the decay. Both are directly related
to the transition amplitude which can be calculated from interaction Hamiltonian that is
responsible for the specific decay.
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Figure  2:  Pion decay signatures in emulsion. The pions lose energy and eventually stop in the emulsion
material. Stopped pions decay to muons and neutrinos. The pions are the short tracks to the left which decay
to a muon moving to the right and an invisible neutrino presumably to the left. The muons lose energy due
to collisions and ionization while they move in the emulsion material and stop decaying to an electron and
two neutrinos. All muons lose their kinetic energy by traveling the same distance because they have always
the same energy to begin with. This is a proof that the two body decay is a two-body decay.

Particle Physics, 4th year Physics at Imperial, Lecturer: Dr. C. Foudas, 7



 Draft write-up:  Lecture 3 Page 8 07/02/2006   

Isotropic decays

A two body decay is defined to be isotropic if the number of decaying particles per unit
solid angle is constant. In other words:

                                                
dN
d

= C      where C is a constant

                     
dN
d 

= dN
d cosd

= C ⇒ dN
d 

= −2C sin

(the minus sign coming from the fact that the cosine is increasing as the angel decreases).

Therefore the isotropic decay distribution is flat in cos but not in  .

           

Figure 3: The differential decay rate of events observed as a function of  cosθ  (left) where the distribution
is flat and as a function of  θ (right) where the distribution is not flat.
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Helicity

Define the helicity operator as: 

                          H = s⋅p
∣p∣

= s⋅p   where s = 1
2


This operator represents the projection of the spin at the direction of motion.  Hence, the
eigenvalues of the helicity operator are:

I.    ±1
2

for massive fermions.

II.    ±1, 0 for massive spin one objects.

III.   ±1  for massless spin one objects.

Using helicity and angular momentum conservation one can make predictions regarding
the spin of the decay products in a two body decay:

Figure 4: The helicity of the decay products of a negative pion.

As an example consider again the decay of a negative pion: -  -  . Conservation
of total angular momentum can be used to determine the helicity of the outgoing negative
muon. We know that the spin of the pion spin has been measured in the 50s and was
found to be zero. Also an experimental fact is that only positive helicity anti-neutrinos
exist in nature (we will learn more on this when we discuss weak interactions). Using this
information now we can predict the muon helicity:
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In the rest frame of the pion the total angular momentum is zero before the decay. The
orbital  angular momentum of the decay products is  also zero.  Hence,  the spin of the
negative muon must be opposite to that of the muon anti-neutrino. Hence, the muon must
have also positive helicity.

Reactions

Information about the nature of interactions can also be obtained by measuring scattering
cross sections. 

Example: 

I. Considering that the cosmic rays are mostly protons, compute the energy threshold for
the reaction p   p where a cosmic ray proton collides with a cosmic
microwave background photon (3 K0  or E = 1.4×10−3 eV ) to produce a pion
and a proton.

II. The spectrum of the observed cosmic ray interactions by the HiRES and AGASA
experiments as shown in Fig. 5. Assuming that the cross section above threshold for
this reaction  is  p = 200B and that the cosmic microwave background photon
density is  = 550 /cm3 compute the mean-free-path for the comic ray protons
and show that they could not possibly come from outside our galaxy.

Figure 5: Cosmic Ray data which demonstrates the existence of cosmic rays in the range above 1019 eV.
The comic ray flux is shown on the y-axis and the energy on the x-axis.
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Solution:

  
      P  P p = P  P ' p ⇒ P  P p

2 = P  P ' p
2 ⇒

                      m
2  m p

22 P P p = m
2m p

22 P P ' p    (1) 

The threshold for this reaction is defined to be the minimum energy which is sufficient to
produce a proton and a pion at rest. The requirement that this is the minimum possible
energy implies that the incoming photon and proton must collide head-on. Therefore:

          1 ⇒ m p
22 E E p− P⋅ P p=m

2m p
22 E E ' p−2 P⋅ P ' p

The proton mass terms cancel and in any case at the energies involved the energy  of the
proton is equal to its momentum in GeV. Hence,

                                4 E E p=m
22 E E ' p−2 P⋅ P ' p ⇒

(the momenta of the out-going pion and proton are zero so only the energies survive as
masses)

                                  E p =
m

22 m m p

4 E

⇒

                                  E p =
0.14022×0.140×0.940

4×1.4×10−3×10−9 ≈5×1019 eV

So there is no doubt that this reaction can occur for the highest energy range particles
which, as shown in Fig. 5, have energies above the threshold energy.

The mean free path for an interaction is given by:

                                   = A
N A××

=
V


Where A is the atomic weight, NA the Avogadro number,  is the density and  is
the cross section of the specific interaction. Since the cross section and the number of
photons per square centimeter is given we can use the second expression to compute the
mean fee path:

Particle Physics, 4th year Physics at Imperial, Lecturer: Dr. C. Foudas, 11



 Draft write-up:  Lecture 3 Page 12 07/02/2006   

                             = 1
550×200×10−6×10−28 ≈ 1023 m

So the likelihood is high that protons produced at distances larger than this will interact
before the reach the earth. Hence, they cannot possibly be observed by detectors on or
close to the earth. This means that the high energy events observed at the high end of the
distribution must have been produced  inside our galaxy and the big unanswered question
is where do these particles come from. This is one of the hot questions investigated by
astroparticle physics today. The threshold energy we calculated is the famous Greisen,
Zatsepin, Kuzmin (GZK) cut off.
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