
APP - Lecture 9 - Measurable rates

9.1 Introduction

We have the QED Lagrangian density and we now want to calculate some measurable quantity
such as a cross section or decay rate. How do we connect the two? We need to put several pieces
together and they are encapsulated in Fermi’s Golden Rule.

9.2 Fermi’s Golden Rule

The most basic equation we use is Fermi’s Golden Rule

Rate = |M |2ρ
∏

in

1

2Ein

where

• |M | is the “matrix element” or “amplitude” and depends on the Lagrangian density,

• ρ is the “relativistic density of final states” (RDFS) or “Lorentz invariant phase space”
(LIPS) and depends only on the final state,

• 1/Ei is a factor to compensate for the incoming wavefunction Lorentz normalisation and
depends only on the initial state.

Fermi’s Golden Rule gives us the rate of a process and there are two things we use it for; decays
and reactions.

For a particle X decaying, then Fermi’s Golden Rule tells us

Rate = |M |2ρ 1

2EX

This is not Lorentz invariant due to the 1/EX ; specifically the higher the particle energy and
hence the faster it is moving, the slower it decays. But this is exactly what is expected from
time dilation. We usually quote the rate in the rest frame of the decaying particle. For decays,
the number left as a function of time is

N = N0e
−t/τ

The rate per particle in the rest frame is then

Rate = − 1

N

dN

dt
=

1

τ
= Γ

Hence Fermi’s Golden Rule directly gives us the width, or partial width if there are several
channels, i.e.

Γ = |M |2ρ 1

2mX
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For reactions, the rate is given by the cross section times the flux of particles

σ =
Rate

Flux

Consider the reaction of a and b so

σ =
1

Flux

(

|M |2ρ 1

4EaEb

)

The flux per particle for just two incoming particles is simply their relative velocity

Flux = |βa − βb|

where βa and βb are the velocity three-vectors of the incoming particles a and b. In the centre
of mass system pb = −pa so the flux becomes

Flux =

∣

∣

∣

∣

pa

Ea
− pb

Eb

∣

∣

∣

∣

= |pa|
(

1

Ea
+

1

Eb

)

= pa
Ea + Eb

EaEb
=
paEcm

EaEb

Hence

σ = |M |2ρ 1

4paEcm

We will often work in the high energy limit, meaning E ∼ p À m and β ∼ 1, so clearly in this
limit

Ea = pa =
1

2

√
s

the flux is
Flux = 2

and the cross section becomes

σ =
|M |2ρ
2s

9.3 Phase space

We still need to evaluate the phase space and the matrix element. The former gives the number
of states available to the final particles produced in the decay or reaction; the more states there
are to go to, the faster the reaction proceeds. You will have met the concept of density of states
in first year structure of matter, where the number of states per unit element of momentum
space was

dN =
d3p

h3
=

d3p

(2πh̄)3
→ d3p

(2π)3

The general form of the relativistic phase space looks complicated

dρ = (2π)4
∫

δ4(Pµ
in − P

µ
out)

∏

out

d3pout
(2π)3

1

2Eout

where the δ4() here is the product of four Dirac delta functions, one for each of the total four-
momentum components. There is a d3p/(2π3) for every outgoing particle, so the number of
integrals depends on the number of final particles. Again, the 1/2E is due to the normalisation,
here of the outgoing particle wavefunctions.

This reduces to something manageable for a two body final state so consider two particles c
and d. Again, in the high energy limit and working in the centre of mass so pin = 0, then the
δ3(pin − pout) means pout = pc + pd = 0, so

pd = −pc, Ed = Ec
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We can use one of the d3pout integrals, e.g. pd, to get rid of these delta functions which leaves
us with

dρ2 =
1

4(2π)2

∫

δ(Ecm − 2Ec)
d3pc
E2

c

But in this limit

d3pc = p2
cdpcdΩ = E2

cdEcdΩ

where the element of solid angle

dΩ = d(cos θ)dφ

Hence

dρ2 =
1

16π2

∫

δ(Ecm − 2Ec)dEcdΩ =
1

32π2
dΩ

or
dρ2

dΩ
=

1

32π2

in the high energy limit. Note, if masses are included, this becomes

dρ2

dΩ
=

1

32π2

√

1− 2(m2
c +m2

d)

s
+

(m2
c −m2

d)
2

s2

Using the above in the high energy limit, for a two body decay X → c+ d, then

dΓ

dΩ
=
|M |2

64π2mX

and for a cross section a+ b→ c+ d, then

dσ

dΩ
=
|M |2
64π2s

The three body or higher final states are not easy to do, even in the high energy limit; luckily
we rarely need them on this course.

9.4 Matrix element

The matrix element contains the “physics” of the interaction and so must be calculated from the
Lagrangian we obtained in the previous lecture. However, the general process of getting from a
Lagrangian to a matrix element is more than a lecture course in its own right. Luckily Feynman
came along and helped us; the system of Feynman diagrams and rules means we can apply
physically intuitive rules to a Lagrangian to allow us to calculate the matrix element without
needing to grind through the full rigours of quantum field theory. A Feynman diagram actually
represents a term in a perturbation series and each item in it represents a multiplicative factor
in the matrix element; by multiplying them all together, you can calculate the amplitude. There
are three types of thing which appear in the diagrams

• The external lines

• The vertices

• The internal lines
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Consider the first; the incoming and outgoing particles are known as the “external lines” because
they go to the outside of the diagram. Since this is a perturbation calculation, these are the free,
non-interacting states and so mathematically we use the Dirac or photon free particle solutions
we obtained earlier.

The vertices are where particles come together and actually interact. These clearly depend
on the Lagrangian interaction term, which for QED we found was

−eAµψγ
µψ

The way to interpret this is that there must be an incoming electron (ψ), an outgoing electron
(ψ) and a photon (Aµ) at every vertex and they are put together with an ieγµ.

-e
γ

-e

µγie

That is the only interaction, and hence vertex, allowed by this Lagrangian density. Note, the
electrons could have negative energy and so the same term physically represents an incoming or
outgoing positron (or both)

-e

γ

+e

+e

γ

-e

+e

γ

+e

so this takes into account all the possible types of interaction. The photon is its own antiparticle,
so the photon can be going in or out.

The above diagram would be the interaction with the highest rate in QED except for one
small problem; it does not conserve energy and momentum. Think of this in one of the electron
rest frames. Hence, in a real process, we must have at least two of the vertices in any diagram.
As the number of vertices goes up, so does the power of e in the matrix element. Since e is
smaller than one, the size of these amplitudes is reduced. Hence, the higher the number of
vertices and more complicated the diagram, the smaller its contribution.

It should be clear that there will always be at least one particle, like the photon in the
diagram, which is not external and only exists within the diagram. Such lines are therefore not
solutions of the free particle equation and are called “virtual” or “off mass-shell” particles; their
mathematical contribution to the matrix element is called the propagator. They have apparently
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+e

-e

γVirtual 

+µ

-µ

weird properties; for example, the photon does not have zero mass, meaning E2 − p2 6= 0. We
know its energy and momentum because those quantities are conserved at every vertex. This
non-zero mass is allowed because only free photon solutions are required to have pµp

µ = 0;
others have a different relation and in general, writing pµp

µ = q2, then the photon propagator
needed is

igµν

q2

Electrons can also be virtual

+e

-e

Virtual e

γ

γ

and their propagator is
iγµpµ +m

q2 −m2

All these points are summarised in the Feynman rules in the handout.
It is worth trying to understand what is going on physically with the virtual particles. The

internal lines correspond to the field being excited by the particles at either end of the line and
basically are the factors which appear for these excited solutions. There is a direct and very
close analogy to a simple harmonic oscillator. The equation can be written

∂0∂
0x+ ω2

0x = F

for which the resemblance to the free Klein-Gordon equation should not be overlooked

∂µ∂
µφ+m2φ = 0
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We know if we excite the oscillator at a non-resonant frequency

F = F0e
−iωt, ω 6= ω0

then we get a solution for the amplitude of

x0 =
F0

√

(ω2 − ω2
0)

2

With a damping term, this becomes

∂0∂
0x+ Γ∂0x+ ω2

0x = F

and the solution for the amplitude is

x0 =
F0

√

(ω2 − ω2
0)

2 + Γ2ω2

This is a resonance shape.

The photon propagator is exactly analogous, where we now consider the mass rather than the
frequency, so the terms become ω2 − ω2

0 → q2 −m2 which is simply q2 for the massless photon.
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We can calculate the momentum dependence of the propagators quite simply. For the photon

∂µ∂
µAν = [Jν ]

where [Jν ] plays the role of the force F is the SHO case and is caused by the electrons at either
end of the photon. Hence,

pµp
µAν = q2Aν = [Jν ]

or

Aν ∝ 1

q2

For the electron propagator,
iγµ∂µψ −mψ = [eAµγ

µψ]

so
(iγµpµ −m)ψ = [eAµγ

µψ]

Here, we have matrices so we cannot divide directly but we can multiply by iγνpν +m from the
left to give

(iγνpν +m)(iγµpµ −m)ψ = (iγµpµ +m)[eAµγ
µψ]

but using the fundamental relation for the γ matrices, this product gives

(iγνpν +m)(iγµpµ −m) = pµpµ −m2 = q2 −m2

so

ψ ∝ iγµpµ +m

q2 −m2
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