
APP - Lecture 8 - The QED Lagrangian

8.1 Introduction

We have used the Lagrangian formalism to find the free particle Lagrangian densities for the
Dirac and Maxwell equations. We want to apply the formalism to the equations including the
interaction terms, i.e.

iγµ∂µψ −mψ − qAµγ
µψ = 0

and

∂µ (∂
µAν

− ∂νAµ) = Jν

and show they are consistent. We also then want to use the formalism to find conserved quan-
tities.

8.2 Dirac Lagrangian density

The free Dirac Lagrangian density we used was

L = iψγµ∂µψ −mψψ

which resulted in the free Dirac equation.

iγµ∂µψ −mψ = 0

as required. Can we add the EM potential? The extra term needed is −qγµAµψ which cannot

come from ∂µ
[

∂L/∂
(

∂µψ
)]

at it would then contain a derivative. Hence, we need to add a new
term

L = iψγµ∂µψ −mψψ − qAµψγ
µψ

This is known as a Lagrangian “interaction term”. Note, the potential Aµ here is not varying
dynamically in response to the electron motion. It is a fixed potential imposed externally.

8.3 EM Lagrangian density

Similarly, we saw the Lagrangian density for the EM potentials for free photons was

L = −
1

4
(∂µAν

− ∂νAµ) (∂µAν − ∂νAµ)

This gives

−∂µ (∂
µAν

− ∂νAµ) = 0

We now want to get the equation with current

∂µ (∂
µAν

− ∂νAµ) = Jν
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Again there is no derivative, so we add an interaction to give

L = −
1

4
(∂µAν

− ∂νAµ) (∂µAν − ∂νAµ)−AµJ
µ

so that the Euler-Lagrange equations become

−∂µ (∂
µAν

− ∂νAµ) = −Jν

Again, Jν is being imposed externally and it has no dynamics within the Lagrangian density.
Note, this Lagrangian density is (apparently) not gauge invariant any more.

8.4 Combined Lagrangian density

Can we put these together? It is clear we cannot have two different interaction terms, as that
would give extra terms (for the other) in each equation. The interaction terms are compatible
if we identify

Jµ = qψγµψ

and the total Lagrangian density for the combined fields becomes

L = iψγµ∂µψ −mψψ −
1

4
(∂µAν

− ∂νAµ) (∂µAν − ∂νAµ)− qAµψγ
µψ

This is not a trivial result; this shows the two equations we got including interaction terms are
compatible with each other.

Note, the dynamics of both fields are included in the same Lagrangian density so that each
can change under the influence of the other. This results in a non-linear system which is usually
only solved using perturbative techniques. These are the Feynman diagrams which we will
discuss throughout the course.

8.5 Conserved quantities

When using fields, Nöther’s theorem is also modified. Rather than having a conserved quantity
if the Lagrangian is invariant under changes of a parameter α

∂L

∂q̇

∂q

∂α

the theorem instead now gives a conserved current

Jµ =
∂L

∂ (∂µq)

∂q

∂α

which, for more than one field variable, is a sum over the qj .
Does the above combined Lagrangian density have any invariants and hence symmetries

which we haven’t found yet? Besides the standard invariance to space and time which we
discussed previously, it has an additional symmetry due to the Dirac field being complex. You
all know that a constant phase is unobservable in quantum mechanics, so we need to look at
what happens if we replace

ψ → ψe−iα, ψ → ψeiα

Clearly, the Lagrangian density is unchanged under this transformation. What is the Nöther
current? We need

∂ψ

∂α
= −iψ,

∂ψ

∂α
= iψ
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Remembering there are two fields, ψ and ψ, then the Nöther current is

Jµ =
∂L

∂ (∂µψ)

∂ψ

∂α
+
∂ψ

∂α

∂L

∂
(

∂µψ
) = (iψγµ)(−iψ) + (iψ)(0) = ψγµψ

i.e. the probability current which we already know is conserved. Note, this result can be
obtained from either the free or the interaction Lagrangian density. This is called a “global
phase transformation”, as the phase change is the same everywhere. This rather odd result
says that QM’s insensitivity to changes in phase, i.e. the symmetry of phase changes, results in
normalisation (and hence charge) conservation.

Why do we specify “global” here? What if α was not constant, but α = α(xµ), i.e. it varied
“locally”? Then the Lagrangian is no longer unchanged, as

∂µψ → ∂µψ − i(∂µα)ψ

so the Lagrangian density becomes

L → L+ (∂µα)ψγ
µψ

Hence, this seems uninteresting because it is not a symmetry. However, what if we do a gauge
transformation? Changing

Aµ
→ Aµ + ∂µΛ

gives
L → L− q(∂µΛ)ψγ

µψ

so if we choose α = qΛ and do both a local phase change and a gauge transformation at the same
time, the Lagrangian is indeed unchanged. (Mundanely, It turns out the conserved current is
unchanged.) So, this Lagrangian is invariant under a combined local phase/gauge transformation
(often called just a local gauge transformation, with the phase implicit).

8.6 The gauge principle

This might seem vaguely interesting, but does it have any particular significance? If QED was
the only force, then probably not, but it seems the other two forces we will consider also share
the underlying idea. Let’s invert the argument; given the combined free Lagrangian density for
the Dirac and Maxwell equations, then we could ask what Lagrangian interaction term would
keep the overall Lagrangian invariant under local gauge transformations. It turns out there is
only one possible term, i.e.

−qAµψγ
µψ

This interaction term is actually most easily found by doing the substitution we found before

∂µψ → Dµψ = (∂µ + iqAµ)ψ

into the Lagrangian density; the Dµ operator is locally gauge invariant itself, so this will always
conserve gauge invariance.

If we impose gauge invariance as a principle, we determine the form of the interaction, and
hence all the physics of QED. So, for the other forces, we can deduce the interaction terms using
this principle once we know the particular symmetry of the force fields.

A few final points.

1. A mass term for the photon would be something like m2AµAµ/2 but this cannot be made
gauge invariant so the gauge principle requires the photon to be massless.
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2. The full Lagrangian has an invariance under both P̂ and Ĉ operations, meaning QED
conserves both parity and charge conjugation quantum numbers.

3. Finally, when considering both electrons and muons, for example, we might postulate
interaction terms containing things like ψeγ

µψµ. These can also not be made gauge invari-
ant as kinetic terms containing the same wavefunction, e.g. iψeγ

µ∂µψe, under local phase
changes will only generate terms with the same wavefunction. To get a cross term would
require a kinetic term like iψeγ

µ∂µψµ which would imply free µ and e spontaneously can
change into each other. As we will see, the absence of interaction cross terms means the
decay µ→ e+ γ is not allowed and indeed has never been seen experimentally.
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