APP - Lecture 7 - Lagrangians

7.1 Introduction

You have all done classical mechanics in terms of Newton’s Laws. There is an alternative ap-
proach which emphasises potentials rather than forces; this is the Lagrangian (and subsequently
Hamiltonian) formalism. There is no new physics in the different method, but it is very use-
ful for situations which involve symmetries and constrained systems, both of which we will be
interested in.

7.2 The general formalism

We want to find the path of a particle ¢(¢) (where ¢ is, for example, the x position) from an
initial position ¢;(¢;) to a final position gf(tf). We construct a function called a Lagrangian, L,
which is (here assumed to be) a function of ¢ and dg/dt = ¢ only. To be concrete, for classical
particles

L=T-V

(Note is is not T'+ V', which is the total energy.) We then construct a quantity called the action

t
A= [ Lig.q) at

t;
We want to find the “real” path taken by the particle. If we guess a function for ¢(t), then we
can calculate ¢ and so do the integral (at least in principle). This will give us a value for the
action A. We could then guess a different function and recalculate A, which will in general have
a different value. A is said to be a “functional” of ¢, A(q), i.e. a function of a function. Note,
it is mot a function of ¢ as this is integrated out.

How do we know which is the real path? Of all the possible paths, the real one is the one
which gives the smallest value of A. This is called the “Principle of Least Action”. This principle
is quite general and can be applied in many situations, not just those with a time dependence;
e.g. the shape of a hanging rope can be calculated in a similar way. How do we find the actual
function which gives the smallest A? If A was a simple function of a variable x, then we would
clearly want dA/dxz = 0. There is a similar calculus for functionals too and mechanically it
works in a similar way. However, this “calculus of variations” is not done as part of the course,
so we will work through this particular problem by hand. For a given path ¢(t), let’s shift it
slightly by dq(t), where we need to be sure dq(t;) = dq(ty) = 0. The change in A is given by
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then we get
tyTOL d (OL
0A = — —— | = || dqdt
/, bq ﬁ(%>}q

But we need §A = 0 at the minimum and the only way this can be true for any dq(t) is if
oL d <8L)
dq  dt \ 0g

This is the Euler-Lagrange equation which allows us to calculate the path ¢(¢). For example,

for classical one dimensional motion, with ¢ = z(t)

1
L:T—V:§m5c2—V(x)

SO
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so the Euler-Lagrange equation gives

mx

—S = mi

dx
which is the classical Newton force law. For more than one variable, ¢;(t), there is one Euler-

Lagrange equation for each
oL _d (oL
aq]' N dt 8qj

with no cross terms. For example, for ¢;(t) = r, i.e. three dimensional motion, the Euler-
Lagrange equations yield
—VV =mr

as expected.
The above shows we can reproduce Newton’s laws in this formalism; so what does using
Lagrangians buy us?

e We can use non-inertial coordinates, unlike using Newton’s laws. This can help simplify
problems enormously.

e Lagrangians lead to quantisation quite straightforwardly.
e There is a systematic method for finding conserved quantities using Lagrangians.

The last point is extremely important; as an example, a very important conservation law follows
from considering

dL 9L dg 6qu_d(8L> LOLd o d
T8 at "V T
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The quantity in the brackets is the definition of the classical Hamiltonian, H, which is therefore
shown to be a constant. For the one dimensional case above

OL 1 1
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This means

H

which is the total energy (which had better be conserved). The important point here is that the
energy is only conserved because L = L(q,q), not L = L(q,q,t), or there would have been an
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Symmetry Conserved Quantity
Translation in space (3 directions) Momentum p
Translation in time Energy E
Rotation in space (3 angles) Angular Momentum

Table 7.1: Space-time symmetries and their associated conserved quantities

extra OL/Ot term in the above. To rephrase this, L has an invariance to changes in time and
this leads to energy conservation. Similarly, if L is invariant to changes in space, i.e. V(z) is
constant and does not depend on z, then 0L/0z = 0 and

d (0L d .

which is momentum conservation, as expected for a constant potential. The set of conserved
quantities arising from space-time symmetries is shown in the table.
This method is very general, since for any parameter «

dL_é?L@ 8qu'_d<8L>dq 8Ld(dq> d(@qu)
do

do~ dgda ' gda  dt\8¢)da T B dt ~ dt \ 9§ da
Hence, if L is invariant to changes in «, i.e. dL/da = 0, then the quantity

oL dy
0q da

is conserved. This is an example of a very general concept known as Nother’s theorem.

7.3 Lagrangians of fields

We can generalise this further; what about fields? Now the variable ¢ = ¢(¢,r) so we need to
make the Lagrangian by integrating over space

_ 9q 99 9q 9q\ 5
L_/£<q’8t’8x’8y’8z> d’r

where L is called the Lagrangian density (or often, sloppily, just called the Lagrangian again).
The action is then

A= /L dt = /L(q,@uq) d3r dt = /E(q, 0uq) d*x

This action gives an Euler-Lagrange equation with extra terms, as there is more than just ¢
now; the result of minimising A is that the Euler-Lagrange equation changes

ow_dgony o [ o
dq dt \ 9q dqg " 0 (0uq)

Let’s take an example; consider the following with ¢ = ¢

1 1
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(Note, this is apparently nothing like 7' — V' any more; this form has been chosen because it
works.) Taking care of the fact that the derivative terms are really squares, this gives

oL 9 oL
= = —m?e, — ot
I T W) R
so the Euler-Lagrange equation is
—m2¢ = 0,0" ¢

or
00" ¢+ mPp =0

which is the Klein-Gordon equation.

7.4 Dirac Lagrangian density

The obvious question is; what Lagrangian density gives us the free particle Dirac equation?
There are several forms (as the Lagrangian density is not unique) but a common one is

L= ia’)’“a,u@b - miw
There is an additional complication here in that ¢ is complex. There are then two variables,
the real and imaginary parts, and in principle we need to do the Euler-Lagrange equations for

each. However, there is a very useful mathematical trick; we can pretend the two variables are
1 and Y*. Clearly, this cannot really be true as

(50).

is impossible; we cannot change 1 without changing ¢*. But formally, we can proceed and it
gives the right answer. In fact, we can even go further and use v/ and 1) as the two variables if
we wish. This turns out to be the easiest thing to do, so taking derivatives with respect to 10,
this gives

% =1y 0,0 — map, 8—5_ =0

P ) (aﬂw)
so the Euler-Lagrange equation is clearly

iy ,h — map = 0

as required. Note, we differentiate with respect to 1) to get the equation for 1 (and vice versa).

7.5 EM Lagrangian density

Similarly, we need a Lagrangian density for the EM potentials for free photons. The result is
1 1 1
_ = LAV Qv Al _ N /2% _ - 2 2
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This gives
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so yielding for the Euler-Lagrange equations
-0y (OMAY —0"A") =0
as required. This is the gauge independent form of the Maxwell equations. Note, since each of

the O* AY — 0" A terms itself is gauge invariant, the free Lagrangian is also. This is obvious as
we can write it in terms of only the E and B fields anyway.



