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Prof. Costas Foudas, 29/11/22

Problem 1:  Consider Ψ = (uA

uB
) to be solution of the Dirac equation where uA , uB are 

two-component spinors.  Show that in the non-relativistic limit where β is considerably 
smaller than 1,  uB ∼ β = υ/ c .

Solution:    

Consider the positive energy Dirac spinor:

                                     u(E , p⃗) = √ E+M (
1

σ⃗⋅p⃗
E+M ) χ s

   

The lower element is depends upon velocity and this is the part that changes as velocity 
changes. This part needs to be re-written appropriately so we can study what happens at 
the non-relativistic limit:

          

σ⃗⋅p⃗
E+M

= σ⃗⋅p̂×
p

M
×

1

1+√1+
P 2

M 2

≈ σ⃗⋅p̂×
p

M
×

1

1+1+
P 2

2 M 2

⇒

          
σ⃗⋅p⃗

E+M
≈ σ⃗⋅p̂×

p
2 M

×
1

1+
P2

4 M 2

≈ σ⃗⋅p̂×
p

2 M
×(1−

P 2

4 M 2
)

 

At the non-relativistic limit the momentum is much smaller than the mass and the ratio of
momentum over mass is a small number. So lets decide to compute this result of order

p
M

. Hence, we can drop higher order terms to get

                           
σ⃗⋅p⃗

E+M
≈ σ⃗⋅p̂×

p
2 M

= σ⃗⋅p̂
M γ β
2 M

≈ σ⃗⋅p̂
β
2
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Therefore, at the non-relativistic limit we have that:

uNR(E , p⃗) = √2 M (
1

σ⃗⋅p̂
β
2 ) χ s

This is the reason that for particles (positive energy solutions) in the non-relativistic limit
the  lower  component  is  smaller  than  then  upper  and  it  is  referred  to  as  the  small
component.

Problem 2:  Show that at the non-relativistic limit the motion of a spin half fermion of
charge e at the presence of an electromagnetic field Aμ = ( A0 ; A⃗) is described by:

                               [ ( p⃗−e A⃗)
2

2m
−

e
2m

σ⃗⋅B⃗ + eA0] χ = E χ

where B⃗ is the magnetic field, σ i are the Pauli matrices and E= p0
−m . Identify the g-

factor of the fermion and show that the Dirac equation predicts the correct gyromagnetic
ratio  for  the  fermion.  To  write  down  the  Dirac  equation  at  the  presence  of  an
electromagnetic field substitute: pμ

→ pμ
− eAμ .

Solution:

The Dirac equation at the presence of an electromagnetic field can be written as:

                                       [γ μ(P μ−e Aμ)−m ]u ( p⃗) = 0                                           (1)

where P μ , p⃗ are the energy momentum operator and the vector momentum. From (1) 
we have that:

                            [γ0 P0−γ⃗⋅p⃗−eγ0 A0+e γ⃗⋅A⃗−m ]u( p⃗) = 0 ⇒  

                            [ p0−m−eA0 −σ⃗⋅p⃗+e σ⃗⋅A⃗

+σ⃗⋅p⃗−e σ⃗⋅A⃗ −p0−m+eA0
]( χ

φ) = 0 ⇒

                             ( p0−m−eA0) χ−σ⃗⋅( p⃗−e⋅A⃗)φ = 0                                           (2)
and      
                             σ⃗⋅( p⃗−e⋅A⃗) χ−( p0+m−eA0)φ = 0                                           (3)
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In the non-relativistic approximation terms ∼A0 φ can be neglected. This uses the 
results form the previous problem (small component) and assumes that the field is weak. 
Hence, from (3) we have that:  

                                                 φ =
σ⃗⋅( p⃗−e⋅A⃗)

p0+m
χ                                                   (4)

and by substituting into (2) we get:

                (P0−m−eA0) χ =
σ⃗⋅( p⃗−e⋅A⃗) σ⃗⋅( p⃗−e⋅A⃗)

p0+m
χ                                         (5)

                σ⃗⋅( p⃗−e⋅A⃗) σ⃗⋅( p⃗−e⋅A⃗) = σ i( p⃗−e⋅A⃗)i σ j( p⃗−e⋅A⃗) j ⇒

                σ⃗⋅( p⃗−e⋅A⃗) σ⃗⋅( p⃗−e⋅A⃗) = p⃗2
−eσ i σ j( p i A j+Ai p j)+e2 A⃗2                   (6)

Note that the momenta and vector potentials do not commute since the momentum is an 
operator pi=−i ∂i .

σ i σ j( p i A j+Ai p j)Ψ = (δij+i εijk σk)( p i A j+Ai p j)Ψ ⇒

σ i σ j( p i A j+Ai p j)Ψ = ( p⃗⋅A⃗+ A⃗⋅p⃗)Ψ+i ε ijk σk p i A j Ψ+i εijk σk Ai p j Ψ ⇒

σ i σ j( p i A j+Ai p j)Ψ = ( p⃗⋅A⃗+ A⃗⋅p⃗)Ψ+i ε ijk σk(−i ∂i) A j Ψ+i ε ijk σk Ai(−i ∂ j)Ψ

by executing the differentiation of the product and canceling the relevant terms we get:

             σ i σ j( p i A j+Ai p j)Ψ = ( p⃗⋅A⃗+ A⃗⋅p⃗)Ψ+σk ε kij (∂i A j)Ψ ⇒

             σ i σ j( p i A j+Ai p j)Ψ = [ p⃗⋅A⃗+ A⃗⋅⃗p+σ⃗⋅B⃗]Ψ                                          (7)

where the last term results of a coupling between the spin and the magnetic field. From 
(5) (6) and (7) we have that

                  (P0−m−eA0) χ =
p⃗2

−e[ p⃗⋅A⃗+ A⃗⋅p⃗+σ⃗⋅B⃗]+e2 A⃗2

p0+m
χ ⇒

                  (P0−m−eA0) χ =
( p⃗−e A⃗)

2
−e σ⃗⋅B⃗

p0+m
χ ⇒
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( p⃗−e A⃗)

2
−e σ⃗⋅B⃗

p0+m
χ+eA0 χ = ( p0−m) χ

which at the non-relativistic limit can be written as:

                   [ ( p⃗−e A⃗)
2

2 m
−

e
2m

σ⃗⋅B⃗+eA0] χ = ( p0−m ) χ = E NR χ

As seen here, and this is the most important point of this exercise, the spin term which
was put 'by hand' in non-relativistic quantum mechanics, it emerges naturaly when one
considera a relativistic invariant equation.  Hence, spin is a relativistic effect which is
predicted by a relativistic description of the interaction of an electromagentic field
with an electron.

Problem 3:  Show that:

(a) Ψ̄ γ5Ψ is a pseudoscalar.
(b) Ψ̄ γ5γ μΨ is an axial vector.

Comment on the Lorentz and parity properties of the quantities:

(a) Ψ̄ γ5γ μΨ Ψ̄ γμΨ   
(b) Ψ̄ γ5Ψ Ψ̄ γ5Ψ   
(c) Ψ̄ Ψ Ψ̄ γ5Ψ   
(d) Ψ̄ γ5γ μΨ Ψ̄ γ5 γμ Ψ   

(e) Ψ̄ γ μ Ψ Ψ̄ γμ Ψ   

It is given that {γ5, γ
μ
} = 0 .

Solution:

(a) Under Lorentz we have that:

Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = Ψ '+( x ' )γ0 γ5Ψ ' (x ') = Ψ + ( x) S+ ( Λ)γ0γ5 S ( Λ)Ψ (x ) ⇒

Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = Ψ +
( x)γ0 γ0 S+

( Λ)γ0γ5 S ( Λ)Ψ ( x)

But we know that: S -1 ( Λ) = γ0 S + ( Λ)γ0 . 

Lecturer: Prof. C. Foudas, Physics, F3.303, Costas.Foudas@cern.ch                         4

mailto:Costas.Foudas@cern.ch


Homework Assignment 7

Particle Physics, 4th year undergraduate, University of Ioannina

Hence,

                        Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = Ψ̄ ( x) S−1( Λ)γ5 S ( Λ)Ψ ( x)

The Lorentz transformation for spinors,  S, can be written in terms of powers of γμ γν

pairs. The matrix γ5 anti-commutes which each of the gamma matrices. Hence, γ5

commutes  with  the product   of γμ γ ν pairs.  Therefore γ5 commutes  with  S and we
have that:

                               Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = Ψ̄ ( x)γ5 Ψ (x )

So it is Lorentz invariant. 

Next check parity:

Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = Ψ '+( x ' )γ0 γ5Ψ ' (x ' ) = Ψ + ( x)γ0 γ0γ5γ0Ψ ( x) ⇒

Ψ̄ ' ( x ' )γ5Ψ '( x ' ) = −Ψ̄ ( x)γ5 γ0 γ0 Ψ (x ) = −Ψ̄ ( x)γ5Ψ (x )

Hence, it is odd under parity. Quantities which are Lorentz invariant but odd under parity 
are called pseudo-scalars. 

                             Hence, Ψ̄ ( x)γ5Ψ ( x) is a pseudo-scalar. 

(b) Next consider the Lorentz transformation of the axial current:

  J 5
μ ' = Ψ̄ '( x ' )γ5γ μ Ψ ' ( x ' ) = [Ψ '( x ' )]+ γ0 γ5 γμ Ψ ' (x ') ⇒

  J 5
μ ' = [Ψ ( x)]

+ S +
( Λ)γ0 γ5 γμ S ( Λ)Ψ ( x) = Ψ̄ (x )γ0 S +

( Λ)γ0 γ5 γμ S ( Λ)Ψ ( x) ⇒

  J 5
μ ' = Ψ̄ ( x) S -1

( Λ)γ5 S ( Λ) S -1
( Λ)γμ S ( Λ)Ψ ( x) = Ψ̄ (x )γ5 Λν

μγ ν Ψ (x ) ⇒

J 5
μ ' = Λν

μ Ψ̄ ( x)γ5 γν Ψ (x ) ⇒   Hence, it transforms as a vector under Lorentz.

Under parity you we get:

               J 5
μ ' = Ψ̄ '( x ' )γ5γ μ Ψ ' ( x ' ) = [Ψ ( x)]+γ0 γ0γ5γμ γ0 Ψ (x ) ⇒

               J 5
μ ' = Ψ̄ ( x)γ0 γ5 γμ γ0Ψ ( x) = (−1)Ψ̄ ( x)γ5 γ0 γμγ0Ψ ( x) ⇒

Lecturer: Prof. C. Foudas, Physics, F3.303, Costas.Foudas@cern.ch                         5

mailto:Costas.Foudas@cern.ch


Homework Assignment 7

Particle Physics, 4th year undergraduate, University of Ioannina

 
                                       J 5

μ ' = (−1)Ψ̄ (x )γ5(γ
ν
)

+ Ψ ( x) ⇒

                                                   J 5
0 ' = (−1)J 5

0

and 
                                                   J⃗ 5' = (+1) J⃗ 5

So J 5
μ transforms under Lorentz as a vector but under parity it transforms in a way that 

it is opposite from that of a polar vector. Hence, J 5
μ is a axial vector.

Answering the last part should be easy: 

(a) Ψ̄ γ5γ μΨ Ψ̄ γμΨ : is Lorentz invariant because is it the dot product of a polar vector 
and an axial vector. For the same reason it has negative parity.

(b) Ψ̄ γ5Ψ Ψ̄ γ5Ψ : Obviously Lorentz invariant and even under parity as a product of 
two pseudo-scalars each having odd parity.

(c) Ψ̄ Ψ Ψ̄ γ5Ψ : Lorentz invariant with odd parity (scalar times pseudo-scalar).

(d) Ψ̄ γ5γμ Ψ Ψ̄ γ5 γμΨ : Dot product of two axial vectors will be of course Lorentz 
invariant with even parity.

(e) Ψ̄ γ μΨ Ψ̄ γμΨ : Dot product of two polar vectors is both Lorentz invariant and even 
      under parity.

Problem 4: Let P be the parity operator acting on Dirac spinors such that:

                                         P Ψ (x μ . pμ
) = ei φγ0 Ψ ( x μ , pμ

)
Show that:

                                       P Ψ (+)
(x μ , p μ

) = +Ψ (+)
(x μ ' , pμ ' )

and
                                       P Ψ (-)

( x μ , p μ
) = −Ψ (-)

( x μ ' , pμ ')

where Ψ
(+) , Ψ

(-) are the positive and negative energy solutions of the Dirac equation 
and x μ

= ( x0 ; x⃗) , pμ
= ( p0 ; p⃗) , x μ ' = (x0 ;− x⃗) = ( x0 ; x⃗ ') ,

       p μ ' = ( p0 ;− p⃗) = ( p0 ; p⃗ ') .
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Solution:

Positive Energy Solutions:

Ψ (+)
(x μ , pμ

) = √ E+M (
1

σ⃗⋅⃗p
E+M ) χ s e−i p⋅x

⇒

P Ψ (+)
(x μ , p μ

) = Ψ (+)' ( x μ ' , pμ'
) = √E+M γ 0(

1
σ⃗⋅p⃗

E+M ) χ s e−i p0 x0−i p⃗⋅x⃗ '
⇒

 

P Ψ (+)
(x μ , p μ

) = Ψ (+)' ( x μ ' , pμ'
) = √E+M (

1
σ⃗⋅(− p⃗)

E+M ) χ s e
−i p0 x0

+i(− p⃗)⋅x⃗ '
⇒

             P Ψ (+)
(x μ , p μ

) = √ E+M (
1

σ⃗⋅p⃗ '
E+M ) χ s e−i p '⋅x '

= Ψ (+)
(x μ ' , pμ ' )

Negative Energy Solutions

Ψ (-)
( x μ , p μ

) = √∣E∣+M (
σ⃗⋅p⃗

E−M
1 ) χ s e−i p⋅x

⇒

  P Ψ (-)
( x μ , p μ

) = Ψ (-) ' ( xμ ' , pμ ' ) = √∣E∣+M γ0(
σ⃗⋅p⃗

E−M
1 ) χ s e−i p0 x0+i p⃗⋅x⃗

=

 

√∣E∣+M (
σ⃗⋅p⃗

E−M
−1 ) χ s e−i p0 x0

−i p⃗⋅x⃗ '
= √∣E∣+M (

σ⃗⋅p⃗
E−M
−1 ) χ s e−i p0 x0

+i (− p⃗)⋅⃗x '
=

−√∣E∣+M (
σ⃗⋅(− p⃗)

E−M
+1 ) χ s e

−i p '⋅x '
= −√∣E∣+M (

σ⃗⋅⃗p '
E−M
+1 ) χ s e

−i p '⋅x '
= −Ψ (-)

(xμ ' , pμ ' )
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In other words, as expected, the parity transformed spinor is a spinor that moves opposite 
than the original as shown in Figure 1.

            Figure 1:  The effect of the parity operation on a spinor with momentum B⃗ . As seen here 
                                parity reverses the momentum vector but does not affect the spin.

Problem 5: Consider the Dirac Hamiltonian:

                                        Ĥ = −i α⃗⋅∇⃗ + β m .  
Show that:                             

                                             [ Ĥ ,γ0 Π̂ ] = 0

where, Π̂ is the coordinate parity operator such that Π̂ f ( r⃗ ) = f (− r⃗ ) .

Solution:

    [ Ĥ , γ0 Π̂ ]Ψ ( r⃗ ) = −i ℏ α⃗⋅∇⃗ γ0 Π̂ Ψ ( r⃗ )−γ0 Π̂ (−i ℏ α⃗⋅∇⃗)Ψ ( r⃗ ) ⇒

 [ Ĥ , γ0 Π̂ ]Ψ ( r⃗ ) = −i ℏ α⃗⋅∇⃗ γ0 Ψ (− r⃗ )−γ0(+i ℏ α⃗⋅∇⃗)Ψ (− r⃗ ) ⇒
  

  [ Ĥ , γ0 Π̂ ]Ψ ( r⃗ ) = −i ℏ α⃗⋅∇⃗ γ0 Ψ (− r⃗ )−(−i ℏ α⃗⋅∇⃗)γ0 Ψ (− r⃗ ) ⇒

                [ Ĥ , γ0 Π̂ ]Ψ ( r⃗ ) = 0
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Problem 6: Consider the Dirac equation for an electron which couples to the 
                    Electromagnetic field

                                       [ iγμ (∂μ− i e Aμ (x ))−m ]Ψ ( x) = 0

                 where Aμ
( x) = (Φ( x) ; A⃗( x)) is the electromagnetic field. Show that the 

                 Dirac equation is invariant under parity provided that the electron and the   
                 electromagnetic field transform under parity as follows.

                              P Ψ ( x⃗ , t ) = Ψ ' ( x⃗ ' , t) = e iφ γ0 Ψ (− x⃗ ' , t )

                              P Φ( x⃗ , t ) = Φ' ( x⃗ ' , t) = Φ(− x⃗ ' , t ) = Φ( x⃗ , t)

                              P A⃗( x⃗ , t ) = A⃗' ( x⃗ ' , t ) = − A⃗(− x⃗ ' , t)
               
Solution:

                             [ iγμ (∂ μ− i e Aμ (x ))−m ]Ψ ( x) = 0 ⇒

           [ i γ0
∂0+i γ⃗⋅∇⃗+eγ0 Φ( x⃗ , t )−e γ⃗⋅A⃗( x⃗ , t )−m ]Ψ ( x⃗ , t) = 0 ⇒                 (1)  

          [ i γ0
∂0−i γ⃗⋅∇⃗ '+e γ0 Φ(− x⃗ ' , t)−e γ⃗⋅A⃗(−x⃗ ' , t)−m] Ψ (− x⃗ ' , t) = 0 ⇒

          [ i γ0
∂0+i γ⃗⋅∇⃗ ' +eγ0Φ(− x⃗ ' , t)+e γ⃗⋅A⃗(− x⃗ ' , t)−m ]γ0Ψ (− x⃗ ' , t) = 0     (2)

By comparing (1) with (2) we see that Dirac's equation with electromagnetic coupling
remains invariant if

                                  Ψ ' ( x⃗ ' , t) = e iφ γ0Ψ (− x⃗ ' , t)                                                (3)

                                  Φ' ( x⃗ ' , t) = Φ (− x⃗ ' , t) = Φ( x⃗ , t)                                     (4)

                                  A⃗' ( x⃗ ' , t) = − A⃗(− x⃗ ' , t )                                                      (5)

As seen here the spinor transforms as expected and the electromagnetic field transforms 
as a polar vector.  
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