
Homework Assignment 6

Particle Physics, 4th year undergraduate, Physics Dept., Univ. of Ioannina

Particle Physics Homework Assignment 6
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Problem 1:  Show that:            (σ⃗⋅⃗a)( σ⃗⋅⃗b) = a⃗⋅⃗b+i σ⃗ ( a⃗× b⃗)    

Solution:    
  
                         (σ⃗⋅⃗a)( σ⃗⋅⃗b) = a iσ ib j σ j = a i b jσ iσ j                                                (1)

                         σ iσ j = δij+ i ε ijk σ k                                                                              (2)

 ⇒ a ib j(δij+i εijk σk) = ai bi+i σk ε kij ai b j ⇒

 (σ⃗⋅⃗a)( σ⃗⋅⃗b) = a⃗⋅⃗b+i σ⃗⋅⃗a×b⃗

Problem 2:  

1. Solve the Dirac equation [ a⃗⋅p⃗+βm ]Ψ = EΨ in the particle rest frame using
the Weyl representation. 

2. Compute the result of the chirality operators 
(1±γ5)

2
 when they are acting on the

solutions of the Dirac equation expressed in the Weyl representation.

Solution:

1.   At the particle rest frame the momentum is zero so we have that:

            [ a⃗⋅p⃗+βm ]Ψ = EΨ ⇒ βΨ=EΨ ⇒ (−E m
m −E )( χ 1

χ 2
) = 0            (1)

We require that (1) has non-trivial (non-zero) solutions.  Therefore the determinant must
be zero. This way the inverse matrix does not exist because if it did one could always
multiply with the inverse from the left side and prove that the solution is identically zero.

This means that:                 E2
= m2

⇒ E = ±m

and again we have negative and positive solutions.
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Positive Energy Solutions:

To obtain the positive energy spinors we substitute E = m  in equation (1) :

                                     (−m m
m −m)( χ1

χ 2
) = 0 ⇒ χ 2= χ1

Hence:                         Ψ = ( χχ) ⇒ Ψ 1
= (

1
0
1
0
) ; Ψ 2

= (
0
1
0
1
)

Negative Energy Solutions:

In  a  similar  fashion  the  negative  energy  solutions  can  be  obtained  by  substituting
E = −m  in equation (1) :

                                  (m m
m m)( χ 1

χ 2
) = 0 = 0 ⇒ χ2 = − χ1

and

                                  Ψ = (+χ−χ) ⇒ Ψ 3
= (

1
0

−1
0
) ; Ψ 4

= (
0
1
0

−1
)

2. The chirality operators are given by:

                              
(1+γ5)

2
= (0 0

0 1)    and   
(1−γ5)

2
= (1 0

0 0)
Hence,

         
(1+γ5)

2
Ψ1,2 = (0 0

0 1)( χχ) = (0
χ)     

(1+γ5)

2
Ψ 3,4 = (0 0

0 1)(+ χ− χ) = −( 0
χ)

         
(1−γ5)

2
Ψ 1,2 = (1 0

0 0)( χχ) = ( χ0)     
(1−γ5)

2
Ψ 3,4 = (1 0

0 0)(+ χ− χ) = ( χ0)
Notice that the chirality operators in the Weyl representation do not mix upper and lower 
components as they do in the Pauli-Dirac representation.
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Problem 3: Positive energy solutions of the Dirac Equation correspond to the 4-vectror 
current: J μ = 2 pμ = 2(E ; p⃗) ; E>0 . Show that negative energy solutions 
correspond to the current J μ = −2(E ; p⃗) = 2(∣E∣;− p⃗) = −2 pμ ; E<0 .

Solution:

We have already shown during the lectures that for positive energy solutions of the Dirac 
equation one can compute the current:

                                              J μ = Ψ̄ γ μΨ = 2 P μ

where P is the 4-momentum of the fermion. 

For negative energy solutions we have shown that  the 0th component of the current    
J μ = Ψ̄ γ μΨ is given by:

                  J 0
= Ψ̄ γ0Ψ = ∣N∣

2 2E
E−M

= ∣N∣
2 −2∣E∣
−∣E∣−M

≥ 0     for E0

Next lets compute the vector part of the 4-current:

                                  J⃗ = Ψ̄ γ⃗Ψ = ∣N∣2
Ψ+ γ0 γ⃗ Ψ ⇒

                J⃗ = ∣N∣
2
( χ s)+ ( σ⃗⋅p⃗

E−M
, 1)(1 0

0 −1)( 0 σ⃗
−σ⃗ 0)(

σ⃗⋅p⃗
E−M

1 ) χ s ⇒

                J⃗ = ∣N∣
2
( χ s)+ ( σ⃗⋅p⃗

E−M
, 1)(0 σ⃗

σ⃗ 0)(
σ⃗⋅p⃗
E−M

1 ) χ s ⇒

                 J⃗ = ∣N∣2
( χ s)+ ( σ⃗⋅p⃗

E−M
, 1)( σ⃗ χ s

σ⃗
σ⃗⋅p⃗
E−M

χ s) ⇒

                J⃗ = ∣N∣2
( χ s)+ [ σ⃗⋅p⃗

E−M
σ⃗ + σ⃗

σ⃗⋅p⃗
E−M ] χ s ⇒

                J i = ∣N∣
2
( χ s)+ [ σ

l pl

E−M
σ i + σ i

σ l pl

E−M ] χ s ⇒
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                J i = ∣N∣
2
( χ s)+ [σ l σ i + σ iσ l ] χ s p l

E−M
⇒

                J i = ∣N∣
2
( χ s)+ 2δil χ

s p l

E−M
= ∣N∣

2 2 pi

E−M
⇒ J⃗ = ∣N∣

2 2 p⃗
E−M

Hence, the 4-current can be written as:

                               J μ = Ψ̄ γ μΨ = ∣N∣
2( 2E
E−M

;
2 p⃗
E−M )

It can be shown and it was done in class that the normalization ∣N∣
2

= ∣E∣M
Therefore,

J μ = Ψ̄ γ μΨ = ∣N∣
2( 2E
E−M

;
2 p⃗
E−M ) = (∣E∣+M )( 2E

−∣E∣−M
;

2 p⃗
−∣E∣−M ) ⇒

                          J μ = (−2E ;−2 p⃗) = −2 pμ
= 2(∣E∣;− p⃗) E<0

This result should be compared with that from positive energy solutions. As we have 
shown before the current for positive energy solutions is:

             J μ = Ψ̄ γ μΨ = ∣N∣
2( 2E
E+M

;
2 p⃗
E+M )  and ∣N∣

2
= EM

Which gives:                                 J μ = +2 p μ

Problem 4:  1. Show that the helicity operator commutes with the Hamiltonian:

                                                   [ Σ⃗⋅p̂ , H ] = 0

                      2. Show explicitly that the solutions of the Dirac equation are
   eigenvectors of the helicity operator:

                            Σ⃗⋅p̂ Ψ = ±Ψ
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Solution:

1. We have that:

                                   Σ⃗ = (σ⃗ 0
0 σ⃗)  and Σ⃗⋅p̂ = ( σ⃗⋅p̂ 0

0 σ⃗⋅p̂)

             [H , Σ⃗⋅p̂ ] = ( m σ⃗⋅p⃗
σ⃗⋅p⃗ −m)( σ⃗⋅p̂ 0

0 σ⃗⋅p̂) − (σ⃗⋅p̂ 0
0 σ⃗⋅p̂)( m σ⃗⋅p⃗

σ⃗⋅⃗p −m) ⇒

             [H , Σ⃗⋅p̂] = ( mσ⃗⋅p̂ σ⃗⋅p⃗ σ⃗⋅p̂
σ⃗⋅p⃗ σ⃗⋅p̂ −m σ⃗⋅p̂) − ( mσ⃗⋅p̂ σ⃗⋅p̂ σ⃗⋅⃗p

σ⃗⋅p̂ σ⃗⋅p⃗ −m σ⃗⋅p̂) = 0 ⇒

                                                       [H , Σ⃗⋅p̂ ] = 0

2.  We will show this for the negative energy solutions. For positive solutions it works the
same way:

               Σ⃗⋅p̂Ψ
(-)

( x) = √(∣E∣+M )(σ⃗⋅p̂ 0
0 σ⃗⋅p̂)(

σ⃗⋅p⃗
E−M

1 ) χ s e−ipx ⇒

                Σ⃗⋅p̂Ψ (-)
( x) = √(∣E∣+M )( σ⃗⋅p̂

σ⃗⋅p⃗
E−M
σ⃗⋅p̂ ) χ s e−ipx ⇒

                Σ⃗⋅p̂Ψ
(-)

( x) = √(∣E∣+M )(
σ⃗⋅p⃗
E−M

1 )( σ⃗⋅p̂) χ s e−ipx                                  (Α)

However we can always choose a the momentum vector on the z-axis where:

                                                  (σ⃗⋅p̂) χ s=±χ s                                                              (Β)

Hence from (A) and (B) we get that:   

                Σ⃗⋅p̂Ψ
(-)

( x) = ±√(∣E∣+M )(
σ⃗⋅p⃗
E−M

1 ) χ s e−ipx = ±Ψ (-)
( x)  
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