
Solutions of Homework Assignment 3,   Particle Physics,  Univ. of Ioannina,  Greece

Particle Physics Homework Assignment 3

Prof. Costas Foudas  11/28/22

Problem 1: The HERA accelerator, which operated at the DESY laboratory in Hamburg
Germany  in  the  period  between  1992  and  2007,  collided  27.5  GeV  electrons  with
920 GeV protons.
 

I. Compute the centre of mass energy (total available energy at the electron proton 
centre of mass) assuming that the angle between the proton and the electron beam 
momenta is 1800  

 (head on collision). 
II. Compute the boost, β⃗CM , of the electron-proton centre of mass frame relative to 

the laboratory frame.
III. What should be the energy of an electron beam colliding with protons at rest if the

centre of mass energy were to be the same with HERA ? This type of experiment 
is called fixed target experiment to distinguish it with the previous which is called 
a  collider experiment. 

Solution:

I. Define P e = P e
0 ; Pe  and P p = P p

0 ; P p to be the beam electron and proton 4-
vectors. We already know that the centre-of-mass-energy-square is given by :
s =  P eP p

2
= me

2
mP

2
2 P e⋅P p  . A the energies we are dealing here we can 

neglect the mass terms and since the beams collide head-on the 4-vector product can 
be simplified. Hence, 

                            s = 4 Pe
0 P p

0
= 101200GeV 2

⇒ √ s ≈ 318 GeV

II. The boost is given by:     β⃗ =
P⃗ p+P⃗e

Pe
0
+P p

0 =
920 x̂−27.5 x̂

920+27.5
= 0.942 x̂

III. For fixed target we have: P e = P e
0 ; Pe  and P p = m p ;0 . Hence, 

    
                                   s =  PeP p

2
= me

2
mP

2
2 P e

0
⋅m p  

      we neglect again the electron and proton masses and we get:

                                               s = 2 P e
0 mp
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Therefore, 101200 GeV 2
= 2 P e

0
⋅m p ⇒ P e

0
=50600 GeV = 50.6 TeV  where  the

proton mass  has been approximately set  to  1 GeV.  As seen here to  achive the same
centre-of-mass-energy at a fixed target experiment one would have to produce a beam of
significantly higher  energy and this  is  the  reason that  we use colliders  to  reach high
centre-of-mass-energies.

Problem 2 : Deduce an expression for the energy of γ-rays from the decay of the neutral
pion, π0

→γγ ,  in terms of the mass  m,  energy  E,  velocity βc of the pion and the
angle of emission θ* of the photon in the pion rest frame. Because the pions have zero
spin the angular distribution is isotropic at the pion rest frame. Show that the γ-ray energy
spectrum  in  the  laboratory  frame  will  be  flat  extending  from Ε (1+β )/ 2 to

Ε (1−β)/ 2 . For relativistic pions, find an expression for the disparity D of the -rays
and show that  for  D>3 one observes  half the decays and for  D>7 one quarter of them.
(Perkins p33, 4th edition). The disparity D is defined as the ratio of the energy of the most
energetic photon divided by the energy of the least energetic photon.

Solution:

Figure 1: A π0  moving in the positive x-direction and decaying in the centre of mass frame (left) and the 
laboratory frame (right).

Lecturer: Prof. Costas Foudas, Physics, F3.303, Costas.Fountas@cern.ch                  2

mailto:Costas.Fountas@cern.ch


Solutions of Homework Assignment 3,   Particle Physics,  Univ. of Ioannina,  Greece

In the CM system we have k1=k1
0 ; k1 and k2=k2

0 ; k2 . However because it is the CM

system k1=−k2 . The two outgoing particles are photons and have zero mass. Hence,

⇒ k1
0
= k2

0
= ∣k1∣ = ∣k2∣ . Using then energy conservation we have that

                                 mπ0 = k2
0 + k1

0 = 2⋅k1
0 ⇒ k1

0 =
mπ

0

2

And the two 4-vectors in the CM frame are completely determined from the kinematics: 
     

                                  k1=
m

π0

2
(1, n⃗) ,   k 2=

m
π0

2
(1,−n⃗)                                                (1) 

The photon energy in the laboratory frame is given by:

                                  k1
LAB

=E1
LAB ; p1

LAB
  

and can be computed using the Lorentz transformation: 
                            
                                  E1

LAB = γ(k1
0+ β⃗⋅k⃗1)                                                                   (2) 

                      (1)(2)   ⇒ E1
LAB

=
m

π0 γ

2
(1+β cosθ*

)                                                (3) 

where  ,  refer to the pion boost in the laboratory frame with:

                                  Eπ 0

LAB
= γ m π0                                                                               (4)

                       (3)(4)  ⇒ E1
LAB

=
Eπ0

LAB

2
(1+β cosθ*

)                                               (5)

The spin of the pion is of course zero and this means that there is no prefered direction at
the  pion  rest  frame.  Therefore  the  decay distribution  in  the  pion  rest  frame  will  be
isotropic.  In other  words  the  number  of  photons  produced  per  solid  angle  will  be  a
constant, C:

                   
dN
d Ω

=C ⇒
dN

dcosθ* d φ* = C ⇒
dN

dcosθ* = 2π C = Constant
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                           (5)  ⇒
dN

dE1
LAB =

2
E

π0

LAB β
×

dN
d cosθ *

= Flat

The limits of the distribution can also be derived with the help of  (5). The photons 
emitted at the direction of the pion have the maximum energy equal to:
               

                            (5)  ⇒ E1
LAB−MAX

=
Eπ0

LAB

2
(1+β)

while those emitted opposite to the direction of the pion will have the minimum energy:

                              (5) ⇒ E1
LAB−MAX

=
Eπ0

LAB

2
(1−β)

Figure 2: The photon distribution in the Laboratory frame.

                                    
The energy disparity, D, of the two photons is given by:

                                       D =
E1

LAB

E2
LAB =

1+β cosθ*

1−β cosθ* ≈
1+cosθ*

1−cosθ*                             (6)
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Note that the disparity distribution has a range from 1 to infinity be definition since for
each event we divide always the most energetic photon by the least energetic one. Double
counting is avoided by not allowing the cosθ* to become negative.

In order to compute the population of decays above a certain value of disparity, D0' one 

needs to know the disparity distribution 
dN
dD

and integrate from  D0  to infinity.

                                         
dN
dD

=
dN

dcosθ*×
dcos θ*

dD
                                     (7)

The first term in (6) known to be a constant and the second we need to compute:

Let                                     cosθ*
= x                                                       (8)

                                          68 ⇒
dD
dx

=
2

1−x2
                             (9)

                                          68 ⇒ x =
D−1
D1

                                  (10)

and using (7) we get:       
dN
dD

=
dN

dcosθ*×
2

(1+D)
2 ⇒           

                                        N (D>D0) = ∫ dN
dD

dD =
dN

dcosθ*×∫
2

(1+D)
2 dD ⇒

                                       N (D>D0) =
dN

dcos θ*×
2

(1+D0)

Hence:

                                      N (D>3) =
dN

dcos θ*×
2

(1+3)
=

1
2
×

dN
dcos θ*  

                                      N (D>7) =
dN

dcosθ *×
2

(1+7)
=

1
4
×

dN
dcosθ*
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Figure 3: The Energy disparity distribution in the laboratory frame.

Problem 3:  A high energy electron collides with an atomic electron which can be 
considered at rest. What is the threshold (the minimum kinetic energy of the incident 
electron) for producing and electron positron pair ?

Solution: 

We are asked to find out what is the minimum kinetic energy so that the reaction

                                                 e- e-
 e - e- e- e+

occurs. In other words what is the minimum kinetic energy of the incident electron so that
the 4 outgoing particles are produced with zero kinetic energy (the only energy they have 
is due to rest mass).

Let  P1
μ
= (E ; p⃗) be the 4-vector  of  the  incident  electron, P2

μ
= (m e ; 0⃗) that  of  the

atomic electron assumed at rest, and P3
μ
= P4

μ
= P 5

μ
= P6

μ
= (me ; 0⃗) the 4 vectors

of the final state particles. 

Conservation of energy and momentum during the collision dictates that: 

P1
μ
+ P 2

μ
= P 3

μ
+ P4

μ
+ P5

μ
+ P6

μ
⇒
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P1  P 2
2
= P3  P 4  P5  P 6

2
⇒

2 me
2
+ 2E me = 4m e

2
+2 ∑

2< j<i<6

p i p j ⇒

2 me
2
+ 2E me = 4m e

2
+2⋅6 me

2
= 16⋅me

2
⇒

                                                   E = 7⋅me

So the kinetic energy of the incident electron must be at least 6 times the mass of the
electron for an extra electron positron to be produced. This is precisely the way that the
anti-poton was discovered via the reaction

                                       p + p → p + p + p + p̄

in 1955 at Berkley and this is why the accelerator was designed to produce a proton beam
up to 6.2 GeV. At the time the unit  GeV was called BeV. Hence the accelerator was
called Bevatron. The results of this experiment have been published in: O. Chamberlain,
E.  Segre,  C  Wiegand,  T.  Ypsilantis,  Phys.  Rev.  100,   947,  (1955).  Also  another
experiment at the Bevatron discovered the antineutron: B.  Cork, G. R Lambertson, O.
Piccioni, W. A.Wenzel, Physical Review. 104: 1193–1197 (1956).                         
 doi:10.1103/PhysRev.104.1193 
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Problem 4: An experiment which measured parity violation in weak interactions as well
as the magnetic moment and the Lande' g factor of the μ+ , used a μ+ beam which was
produced from the decay in flight of an incident π+  beam ( π+

→ μ+ νμ ). The kinetic
energy of the π+ beam was  85 MeV. The π+ beam was produced by colliding a proton
beam from an accelerator with a target and selecting the positively charged π+  from the
negatively charged π - using a magnetic  field.  Positive pions of a certain direction and
momentum were selected by passing the  π+ beam through an appropriately positioned
concrete block with a straight hole through it. 

Questions regarding the beam:

I. Compute the decay length of the pions in the laboratory frame. The lifetime of the
π+ is  26  ns and  the  π+ mass  is  about  140  MeV.  The  incident  beam  to  the
experiment was a mixture of 10% μ+  and 90% π+ .  How far was the experiment
from the point where the  pions were produced ?
  

II. Compute the pion mean free path in carbon assuming that the pion carbon cross   
            section at the relevant energy is 10 mb. This cross section includes all strong   
            interaction processes that contribute. The carbon density is ρ = 2.265 g/cm3.

III. Compute the muon and neutrino energies in the rest frame of the pion. Assume
that the neutrino is massless and that the mass of the muon is m μ=106 MeV .

IV. Compute the maximum and minimum energy of the muon in the lab frame.

V. The authors of the paper placed a carbon block, approximately 20 cm long, infront
of a tileted carbon target. Justify the need for this block given that pions  and 
muons of  this energy lose in carbon approximately 4.5 MeV/cm due to 
ionization. Energy loss via ionization is the topic of the next lecture.
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Questions Regarding the Apparatus:

Figure 4: Part of the apparatus of the Garwin-Lederman-Weinrich experiment Phys. Rev.,105:1415-1417,
1957. The 85 MeV  pion beam at Columbia University NEVIS labs is shown entering from the top. The
carbon absorber length has been chosen so that only muons exit the carbon block whilst the pions stop in
the block.  Hence  a signal coincidence  from the counters #1 and #2 indicates that a muon has gone
through.  If the carbon length is chosen appropriately most muons will likely stop on the tilted carbon
target below.

The experimental apparatus is shown in Fig. 1. A carbon block has been used to separate
the pions from the muons. Actually the carbon block was introduced to for two reasons:
(1) to stop the pions (2) to slow down the muons in such a way so that when they exit the
carbon block they have very little kinetic energy left and thus they stop at the carbon
target shown tilted at the bottom of Fig.  4. There they decay giving one electron and two
neutrinos and the properties of the decay electron can be measured. 

Two counters #1 and #2 have been placed at the path of the beam before and after the
carbon block. Counters are devices made of liquid or plastic scintillator. When a charged
particle  goes  through a  counter  it  excites  the  scintillator  material  and produces  light
which can be collected and converted by photo-tubes to charge. Detection of this charge
using electronic circuits  provides information which indicates that a particle has gone
through the scintillator material as well as allows a measurement of  the time that the
particle went through. 
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The signals  from Counters  #1  and #2 in  this  experiment  are  used  in  coincidence  to
provide an experimental trigger. This means that if both counters detected that a particle
went though at the same time1 (coincidence trigger) then that meant that a muon went
through the carbon and exited from the other side albeit with very little kinetic energy so
that it most likely stopped on the target. If the trigger coincidence condition was fulfilled
then detectors around the target were activated appropriately and recorded the data from
the muon decays.

VI.Compute the maximum possible angle of the decay  muons from pions in the
 Laboratory frame. Use the results from (V) and explain how does the carbon block
 constrain this angle. Do the angles of the muons which are capable to  penetrate  
the block extend up to this angle ? 

VII.Given that this experiment does not record data unless if there is a trigger,
  compute and discuss how does the distance between the two counters affects the   
  muon energy spectrum detected in this experiment. Assume that the beam enters  
  at the center of the fist counter. 

Hence, this part of the apparatus has been designed to collect muons which stop at the
target (for sometime since the muon lives only 2.16 µsec) to study their properties. The
rest of this experiment as well as the results of it will be discussed later in the course
when we discuss parity violation in weak interactions and and about the muon magnetic
moment.

Solution:

I. The kinetic energy of the pions is KE = 85 MeV.  Hence,
           
           Eπ = 85+140 MeV = 225 MeV ⇒

                γ =
E π

mπ

=
225 MeV
140 MeV

=1.61 ⇒ β=0.783 ; β γ=1.26       

                l = c β γ τ = 1.61×0.783×3×108
×26×10−9 m = 9.83 m

If the beam contains only 10% muons this means that 90% of the pions have survived at
the entry point of the experiment which we assume it to be located at distance D from the
pion production point.

1  The time difference introduced by the muon travelling between the two counters is very small and the 
experiment is not sensitive to it.
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N I

N 0

=e
−t
(γτ) ⇒ ln (

N I

N 0

) = (−1)×
t

γτ
⇒ −.105 = (−1)×

D
c βγ τ

⇒ D = 1.03m

II.  

λ =
A

N A×ρ×σ
=

12.01 gr mole−1

6.022×1023atoms mole−1
×2.265 gr cm−3

×10×10−3
×10−28 m2

  
                                                 λ=880cm

Hence, strong interaction processes which  contribute the pion-nucleon cross section
(10 mb) do not result to enough energy loss to stop the pions in the 20 cm of carbon.
However, the pions lose energy also via another process, the ionization, at a rate of 4.5
MeV/cm (see next lecture).

III.  This is a two-body decay, π+
→ μ+ νμ  , therefore in the pion rest frame we have

        Pπ = P ν+P μ ⇒ (P π−Pν )
2
= P μ

2
⇒ m π

2
−2 mπ E ν = mμ

2  and finally

             E ν =
m π

2
−mμ

2

2mπ

=
1402

−1062

2×140
MeV = 29.87 MeV ≃ 30 MeV

Assuming that  the  neutrino  is  massless  we have  that  pν = E ν in  units  of  ℏ=c=1
(perhaps now you start appreciating the use of these units). At the pion rest frame (two
body decay) we have that:

                                                  pμ = pν = E ν                                  (1)

Hence               E μ = √E ν
2
+mμ

2
= 110.1 MeV ≃ 110 MeV           (2)

IV.  Muons of maximum energy at the laboratory frame are those that travel at the pion 
direction in the pion frame and those that travel opposite to it will have the minimum 
energy in the lab frame. This statement makes perfect sense but can also be derived 
from the Lorentz transformation:

                                  E μ
LAB

= γ(E μ+ β⃗ p⃗μ)                                                         (A)

and using (A)           E μ
LAB−MAX

= 1.61(110+0.783⋅30)MeV = 215 MeV
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                        E μ

LAB−MIN
= 1.61(110−0.783×30)MeV = 139 MeV

V. Easy:  L =
85
4.5

cm ≈ 19cm so 20 cm is enough so that no pions exit. They will 

stop in the carbon block and decay there. However the kinetic energy of the muons 
from the pion decay in flight at the laboratory system is between

  139−106 ⩽ KE μ
LAB

⩽ 215−106 MeV ⇒ 33 MeV ⩽ KE μ
LAB

⩽ 109 MeV

So with 20 cm carbon the muons will lose at most 4.5
MeV
cm

×20cm = 90 MeV so

not all of them will come out of the block. Muons with kinetic energy above 90 MeV will
definitely exit  the  carbon block and will  have  kinetic  energies  in  the  range between
0-19 MeV. If their remaining KE is sufficiently low they will stop at the carbon target and
decay there.   

VI.  Let θ , pμ be the angle and the 4-momentum of the decay muon in the pion frame 
and θ LAB , pLAB

μ be the angle and 4-momentum of the muon in the laboratory frame. 
The Lorentz transformation from the  the pion to the laboratory frame gives:

                                 pLAB
0

= γ( p0
+ β⃗ ⋅p⃗) = γ p0

+β γ p cosθ                                  (3)

                           pLAB
1

= γ p1
+βγ p0

= γ pcosθ+β γ p0                                     (4)

                            pLAB
2

= p2
= psinθ                                                                  (5)

(The axis with index 1 is along the the boost direction and  the axis with index 2 is 
perpendicular to it).

                      
tan (θ LAB) =

pLAB
2

PLAB
1 =

p sinθ

γ p cosθ+β γ p0 =
sinθ

γ cosθ+βγ
p0

p

Demand that tan (θ LAB) has a maximum as a function of θ and you get that

           cosθ MAX
= (−1)

p
β p0=

−30
0.783×110

⇒ θMAX
= 1100

in the pion frame

and in the laboratory frame
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                                         tanθ LAB = 0.224 ⇒ θ LAB

⩽12.60

The muons capable of penetrating the block will have energies above Emin=106+90 MeV.

Hence,           (3)    ⇒ pLAB
0

= γ p0
+β γ p cosθ ⩾ Emin ⇒

                cosθ ⩾
Emin−γ p0

βγ p
=

196−1.61×110
1.26×30

= 0.5 ⇒ θ ⩽ 600 ⇒

               
tanθ LAB ⩽

sin600

1.61×cos600
+

1.26×110
30

= 0.16 ⇒ θ LAB ⩽ 9.10

Hence, the muons that can penetrate the block can never be emitted at angles larger than
9.1 degrees (these have energies between 196 and 215 MeV or kinetic energies between
90 and 109 MeV.  It is also easy to show that the most energetic muons, those with E-
215 MeV, will exit at zero angles as expected.

         cosθ ⩾
Emax−γ p0

βγ p
=

210−1.61×110
1.26×30

≈ 1 ⇒ θ ≈ 00 ⇒ θ LAB ≈ 00

 
VII.  By making the distance between the counters larger (i.e moving #1 further up-

stream) we are constraining the muon angle in the laboratory frame as well as the 
angle at the pion rest frame to lower values and therefore the energy at higher values. 
For example muons of energy larger than 210 MeV correspond to 

      cosθ ⩾
Emin−γ p0

βγ p
=

210−1.61×110
1.26×30

⇒ θ ⩽ 29.50⇒ θ LAB ⩽ 4.680

which can be obtained by putting the counters 61cm apart. The bottom line is that by
adjusting the carbon block length and the counter distance one can determine the energy
of the muons. 
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Problem 5:  When the muon was originally discovered back in 1937 (see next lecture),
people thought that this was the Yukawa particle. The Yukawa particle was considered
then to  be the mediator  of  the strong interaction.  This  incorrect  interpretation  of  the
nature of the muon was due to the fact that the muon mass (106 MeV) was not very
different from the expected mass of the particle predicted by Yukawa. Later on it turned
out that the Yukawa particle was the pion (140 MeV) which was discovered in 1947 at
Bristol.

This problem2 relates to the calculations done  by Tomonaga and Araki who predicted
that negative muons as they slow down in matter would be more likely to be captured by
the nuclei  rather than decay and the question of course is  if  the strong interaction is
responsible for the muons which get 'swallowed' in the nucleus.

(a) Show that a negative muon captured in an S-state by a nucleus of charge Ze and
mass A will spend a fraction f ≃ 0.25 A(Z /137)3 of its time inside the nuclear
matter and that in time t  it will travel a total distance fct (Z /137)  in the nuclear
matter.  The  hydrogen  atom ground  state  wave  function  can  be  used  in  these
calculations with modifications to account for the fact that  the muon mass is of
the order of 200  times larger than the electron mass: 

Ψ 100 =
1

√π
(

Z
α0

)
3 /2

e
−

Zr
α0 where  α0 =

ℏ
2

M R e2  and  M R=
A m p m

A m pm

is  the

reduced  mass  of  the  proton  muon  system.  The  proton  and  muon  masses  are
m p = 938 MeV and m = 106 MeV .

(b) The  law  of  radioactive  decay  of  free  muons  is  dN /dt = −Γd N ,  where
Γ=1/ τ  is the decay constant (width) and the lifetime is  τ=2.16μ sec . For a

negative  muon  captured  in  an  atom  Z the  decay constant  is  Γ TOT=Γ d+Γ c ,
where  Γ c  is the width for nuclear capture i.e.  the probability per unit time of
nuclear capture. For aluminium  Z=13, A=27  the mean lifetime of negative
muons  is  τ=0.88 μ sec .  Calculate  Γ c  and  using  he  expression  for f  in  (a),
compute the interaction mean free path Λ for a muon in nuclear matter.

(c) From the magnitude of Λ estimate the magnitude of the coupling constant of the
interaction  that  caused  the  nuclear  capture μ-

+ p→n+ν given  that  the  strong
interaction coupling constant is αS and corresponds to a mean free path of 1 fm . 

2This is a modified version of problem 1.9  in p34 in Perkins 4th edition.
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Conversi, Pancini and Piccioni3 did experiments in Rome in the 40s to test Tomonaga's
and  Araki's  hypothesis  and  found  that  positive  muons  traversing  different  materials
always decay rather than being captured (not surprising). They also found that negative
muons undergo nuclear capture in iron rather than decay as predicted by Tomonaga and
Araki4. Compare the mean free path for a muon to be captured by an Aluminum nucleus
with the typical mean free path of a strong interaction reaction and draw conclusions as to
wheather the muon could be the mediator of the strong interaction. 

Solution:   The fraction that the muon spends in nuclear matter is equal to the probability
of the muon being in the nucleus which can be calculated using quantum mechanics:

                                     f = ∫0

rN

Ψ 100
* Ψ 100 dV ⇒

                                     f = ∫0

rN

∫0

Ω 1
π
(

Z
α0

)
3

e
−2Zr

α0 r2 dr dΩ ⇒

                                     f = 4(
Z
α0

)
3

(
α0

2Z
)

3

∫0

2ZrN

α0 e− y y2dy ⇒                                    (1)

However the integral can be calculated as according to:

                              f = ∫0

y0

y2e− y dy = 2−2 e
− y0−2y0 e

− y0− y0
2 e

− y0                         (2)

Hence, from (1) and (2) we have that:

                              f = [1−e− y0− y0 e− y0−(
1
2
) y0

2e− y0]
y0=

2ZrN

α0

                                       (3)

The quantity y0 is a small number since it is a division of the nuclear radius by the Bohr
radius. Hence, by expanding the exponentials and keeping terms up to y0

3 we get that:

                                                    f =
1
6( 2ZrN

α0 )
3

                                                       (4)

3  Conversi, Pancini and Piccioni, Phys. Rev., 71. No 3, 1 Feb. 1947.
4 They also found that negative muons do not get captured in Carbon and they thought that this 

contradicts Tomonaga's and Araki's prediction. However as it will become apparent this is due to the 
lower Z of the Carbon nucleus (Z=6) relative to Iron (Z=26).

Lecturer: Prof. Costas Foudas, Physics, F3.303, Costas.Fountas@cern.ch                  15

mailto:Costas.Fountas@cern.ch


Solutions of Homework Assignment 3,   Particle Physics,  Univ. of Ioannina,  Greece

It is given that                                          a0 =
ℏ

2

M R e2                                         (5)

Note this is the Bohr radius for a hydrogen atom where the electron has been replaced by 
a muon. The fact that the actuall Bohr radius for an atom with Z protons is α0/Ζ has 
already been taken in to account in the wavefunction formulae.

and (4) and (5) give:                          f =
4
3

Z 3 M R
3 e6

ℏ6 ×r N
3                                 (6)

What is left now is to compute the nuclear radius rN .

The  nuclear  radius  can  be  estimated  from  the  compton  wavelength  of  the  pion
140 MeV ⇒ r p=1.4 fm  scaled by A1/3 to account for the fact that the nucleus has
many protons and neutrons:

                                  4
3

π rN
3
=

4
3

π( ℏ

mπ c
A

1
3)

3

⇒ r N
3
= ( ℏ

mπ c)
3

A       (7)

So from (6), (7) we get:

                                              f =
4
3(

M R

mπ
)

3

A( Z
137)

3

The reduced mass is given by : M R=
A m p m

A m pm

which for large A as in (b) becomes

                                               M R ≈ m=106 MeV

Hence,        f =
4
3(106

140)
3

A(
Z

137
)

3

=
4
3
×0.43×A( Z

137)
3

= 0.58 A( Z
137)

3
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Easier way of solving this problem and comparison with the result from Perkins:

A more rough results can be computed as follows: The Bohr radius for such an atom is 

                                                       α0=137 /Z m μ

and the nuclear radius can be computed as :

                                       rN=
197.3 MeV fm

140 MeV
A1/3

=1.4 fm A1 /3

Simple volume arguments then give that:

             f = ( r N

α0 )
3

= (1.4(
1

197.3 MeV
)106 MeV )

3

A( Z
137)

3

= 0.43 A( Z
137)

3

which is off by (4/3) from the exact result. 

It turns out that Perkins has used  1.2 fm A1 /3 for the nuclear radius which then gives:

f = 0.27 A( Z
137)

3

.   However,  all  these  tell  us  that  simple  'back  of  the  envelope'

calculations can come very close to the exact quantum mechanical result (if you know
what you are doing).

Next we will calculate the distance traveled by the muon in nuclear matter for a given 
time period t. Just like in Homework 1 we can compute the velocity of the muons as:

                                         
me υ2

α0

=
1

4π ε0

×
Z e2

α0
2 ⇒                 

                                     m e υ2
=

1
4π ε0

×
Ze2

α0

                                                 (1)

As before structure constant is given by: α =
e2

4π ε0ℏ c
=

1
137

which for

  ℏ = c = ε0 = 1  becomes               α =
e2

4π
=

1
137

                                 (2) 
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However the Bohr radius (compute it and convince yourselves) also acquires a factor of Z
in the denominator as seen before:

        
(1)(2) ⇒ me υ2

=
Z α
α0

⇒ υ2
=

Z α
α0×m e

=
Z α

1
α×Z×m e

×me

= (Z α)2

Hence,    υ = Z α  and the time that the particle spent in nuclear matter is of course

                                             D= fct 
Z

137


(b) This is somewhat easier: The total width for the muon to disappear is the sum of the 
width to be eaten (captured) by the nucleus plus the width to die in old age by itself 
(decay). In other words:

                                     Γ TOT = Γ decay + Γ capture ⇒

          
1

τ TOT

=
1

τ decay

+
1

τ capture
with τ decay=2.16 μ sec  and τ TOT=0.88 μ sec

Hence,  τ capture=1.49 μ sec  which is order of magnitude larger than a typical strong 
interaction lifetime. The mean free path can now be computed from:  

                                                  f = 0.58 A
Z

137


3

D= fct (
Z

137
)=0.58 A(

Z
137

)
4

c τ capture=0.58×27×31010
×(13/137)4×1.49μ sec ⇒

                                                 D ≈ 57 cm

 Recall that the mean free path was inversely proportional to the interaction cross section.
So the ratio of the cross section of the interaction that causes the capture over the strong 
interaction cross section is related to the mean free paths of the two interactions as

                                       
σ capture

σ strong

=
1 fm
57cm

= (
1
57

)×10−13
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As you may remember from quantum mechanics the cross section is proportional to the
coupling-constant-square  because  the  cross  section  is  computed  from  the  amplitude-
square. Hence, the ratio of coupling of the two interactions is equal to the square root of
the ratio of cross sections. Hence,

                                            
gcapture

g strong

=  1
57

×10−13
= 4×10−8

Conclusion:  Whatever causes the muon to be captured in the nucleus and decay faster
has nothing to do with the strong interaction because it has a coupling constant which is
eight orders of magnitude smaller. So the muon could not have been the Yukawa particle.
Actually the negative muon does decay faster than in vacuum when captured in the K-cell
due to the reaction μ- p→n ν μ which occurs in addition to the decay in vacuum which

is described by μ-
→ e- ν̄e νμ . However, the former is also a weak interaction reaction

and has a cross section far smaller than then strong interaction cross section. Hence, the
muon is not the Yukawa particle.
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