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Particle Physics Homework Assignment 2

Dr. Costas Foudas  
Problem 1:   Show that  g μ ν g

μ ν
= 4 .

Solution:  

                                       g μ ν g
μ ν

= g μ ν g
ν μ

= δμ
μ

= 4

Problem 2:   Show explicitly that Λ α
μ Λμ

β
= δα

β .  Use a Lorentz boost in the 

                      x-direction  ( β⃗ =
υ
c
x̂0 ) in the place of Λ ν

μ .

Solution:

The problem in  Λ α
μ Λμ

β
= δα

β  is that this is not in a matrix multiplication form. In a
matrix multiplication we sum over column-row indices (second-first index) where here
the summation is over row-row indices. So just writing down two Λ α

μ  matrices as given
in the class and multiplying them is definitely wrong.

This problem can be solved in two ways:

1st way (short):

We have shown that Λ α
μ =(Λ−1)α

μ where (Λ−1
)α
μ  is the inverse Lorentz matrix of Λ α

μ .
Therefore what we are really asked to prove is:  

                                Λ α
μ Λμ

β
= δα

β
⇒ (Λ−1

)α
μ Λμ

β
= δα

β                                    (A)

Now it is in a matrix multiplication form because we sum over the column elements of
the first matrix multiplied one-by-one by the row elements of the second matrix. Relation
(A) is already a proof but we will continue to prove it explicitly as requested. 

Computing the inverse matrix can be easy using he following argument:

 If the boost matrix for β⃗ =
υ
c
x̂0  is given by :  

 = 
 −  0 0

−  0 0
0 0 1 0
0 0 0 1

     (1)
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then the  inverse matrix must be given by the transformation defined by the boost:

                                                   β⃗ = (−1)×
υ
c
x̂0                                                    (2)

 
using (1) (2) we can derive the inverse matrix as:   

                                      (Λ−1
) ν
μ

= (
γ β γ 0 0
β γ γ 0 0
0 0 1 0
0 0 0 1

)                                             (3)       

However what is needed is (Λ−1
)α
β  and this means that we need to manipulate (3).

                                   (Λ−1
)α
β

= gα μ(Λ
−1

) ν
μ gν β ⇒

          (Λ−1
)α
β

= (
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)(
γ β γ 0 0
β γ γ 0 0
0 0 1 0
0 0 0 1

)(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
                                (Λ−1

)α
β

= (
γ −β γ 0 0

−β γ γ 0 0
0 0 1 0
0 0 0 1

)                                       (4)

Now lets got back to (A). The fist matrix is exactly what we have in (4). However, the 
second is not exactly what we have in (1) and needs to be changed using the metric tensor
as follows:

                (Λ−1)α
μ Λμ

β = δα
β ⇒ (Λ−1)α

μ g μ ρ Λ σ
ρ g β σ = δα

β        (5)   
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The left-hand side of (5) can then be calculated as:    (Λ−1)α
μ g μ ρ Λ σ

ρ g β σ =

    (
γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

)(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)(
γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

)(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)=

    = (
γ2

−( βγ)2
+βγ2

−β γ2 0 0

−βγ2
+βγ2 γ2

−( βγ)2 0 0
0 0 1 0
0 0 0 1

) = (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) = δα
β

Hence, we have the proof.

Second way: One can calculate all elements one-by-one and show that the result will be a
δα

β . Here is how you would do it. Use:

                                         Λ α
μ

= (
γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

)                                (1)

to compute:             

                                 Λμ
β

= g μ ρΛ σ
ρ gσ β = (

γ β γ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

)                  (2)

Using (1) and (2) one can compute each element separately: 

For example: Λ 0
μ Λμ

0
= Λ 0

0 Λ0
0

+ Λ 0
1 Λ1

0
+ Λ 0

2 Λ2
0

+ Λ 0
3 Λ3

0
⇒

       Λ 0
μ Λμ

0 = γ γ + (−γβ)(βγ) + 0 + 0 = γ2−( βγ)2 = 1 = δ0
0

Hence we have proved that it is true for one matrix element and one can do this for all   
other  elements. 
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Problem 3: Show that the expression T α β xα y β is a Lorentz invariant provided that
                  T α β transforms as a rank-2 tensor and x , y transform as covariant  
                    vectors.
Solution:

Let T α β ' xα ' y β '  be the product in the reference frame O'  and   T α β xα y β  the he same 
product in reference frame O.  We are asked to show that this produce is Lorentz 
invariant that is: it does not change from frame to frame

                           T α β ' xα ' y β ' = Λ μ
α Λ ν

β T μ ν Λα
σ xσ Λβ

ρ x ρ                       (1)

using the Lorentz property  that        Λ α
μ Λμ

β
= δα

β                                    (2)    

Using (1) (2) we have that:

        T α β ' xα ' y β ' = Λ μ
α Λα

σ Λ ν
β Λβ

ρT μ ν xσ x ρ = δμ
σ δν

ρT μν xσ x ρ = T μν x μ xν

Hence, invariant.

Problem 4:   Show that the 4-derivatives 
∂

∂ xμ  and 
∂

∂ xμ
transform as Lorentz   

                      covariant and contravariant vectors respectively.

Solution:  

Consider the infinitesimal Lorentz transformation and its inverse:

                              δ x
μ ' = Λ ν

μ δ xν ⇒
∂ x μ '
∂ xν

= Λ ν
μ

                     (1)

                             δ x
μ

= (Λ−1
) ν
μ δ xν ' ⇒

∂ x μ

∂ xν '
= (Λ−1

) ν
μ

          (2)

The  ν   ∂ν transforms as a covariant vector because:

        ∂ν ' = ∂

∂ xν '
=

∂ xμ

∂ xν '
∂

∂ xμ
= (Λ−1

) ν
μ ∂

∂ x μ
= (Λ−1

) ν
μ
∂μ = Λν

μ
∂μ
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Similarly one can compute the inverse transformation (not required):

           ∂μ = ∂
∂ x μ

=
∂ xν '
∂ x μ

∂

∂ xν '
= Λν μ ∂

∂ xν '
= Λν μ∂ν ' = (Λ−1

)
μ ν

∂ν '

The contravariant derivate transformation can be computed from:

          ∂
ν ' = ∂

∂ xν '
=

∂ xμ
∂ xν '

∂
∂ xμ

= (Λ−1
)μ
ν ∂
∂ x μ

= (Λ−1
)μ
ν
∂
μ

= Λ μ
ν

∂
μ

in other words we have proven that it transforms as a contravariant vector.

Problem 5:  

1) Write down  the definition of a parity transformation. 
2) Consider two Lorentz 4-vectors: X μ  and Y μ .   X μ  transforms as a polar  vector, 
and Y μ as an axial vector . How do they transform under parity ? 
3) Which of the following Lorentz invariant quantities is invariant under parity and 
which is not: 
                    (a) X μX μ (b) Y μY μ (c ) (X μ

−Y μ
)⋅(X μ−Y μ)    

Solution:

1)  A parity transformation is defined as:

                          P : t  t ' = t x  x ' = −x

2)    The polar vector transforms under parity as:

                              P (X μ) = P (X 0 ; X⃗ ) = (X 0 ;− X⃗ )

whilst the axial vector transforms as:

                               P (Y μ
) = P (Y 0 ; Y⃗ ) = (−Y 0 ;+Y⃗ )

3)  Next consider the quantities:                          

    (a) P (X μ X
μ
) = (X 0 X 0

−(−1) X⃗⋅(−1) X⃗ ) = X μX
μ (invariant under parity)
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    (b) P (Y μY
μ
) = ((−1)Y 0

(−1)Y 0
−Y⃗⋅Y⃗ ) = Y μY

μ       (invariant under parity)

    (c) P (X μY
μ
) = ((+1) X 0

(−1)Y 0
−(−1) X⃗⋅(+1) Y⃗ ) = −X μY

μ

                                                                                               (not invariant under parity)
Hence,

              P [ (X μ
−Y μ

)⋅(X μ−Y μ)] = P [X μ X
μ
+Y μY

μ
−X μY

μ
−Y μX

μ
] ⇒

P [ (X μ
−Y μ

)⋅(X μ−Y μ)] = X μ X
μ
+Y μY

μ
+ 2 X μY

μ
= [(X μ

+Y μ
)⋅(X μ+Y μ)]

                                                                                (obviously not invariant under parity)

Problem 6: 

1) Using Maxwell's equation in three dimensions show that the Electric Field, E , is 
a vector  and the magnetic field, B , an axial vector. 
2)  As  one  can  see,  Maxwell's  equations  are  not  completely  symmetric  because
although they include an electric charge density, e , and an electric current density

J e ,  the  equivalent  magnetic  quantities, m , Jm ,  are  absent  indicating  that
there are no magnetic monopols.  Introduce magnetic monopols and write down the
completely symmetric Maxwell equations. Show that m must be a pseudoscalar and

Jm an axial vector. 

Solution:

Maxwell's equations in the standard 3-D notation are:

                                                   ∇⋅E = 4e                             (1)
      
                                                   ∇⋅B = 0                                     (2)

                                                   ∇⃗×E⃗ = −
1
c

∂ B⃗
∂ t

                    (3)         

                                                    ∇⃗×B⃗ =
4π

c
J⃗ e+

1
c

∂ E⃗
∂ t

        (4)
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The  electric  charge  density, ρe ( x⃗ )  ,  is  a  scalar   whilst  the  electric  current  density,
J e  x  , is a polar vector.  

By requiring that  equation (1) is  invariant under rotations  and parity (electromagnetic
interactions conserve parity)  we have that the electric field, E  x , is a polar vector. If
the electric field is a polar vector, parity invariance of (3) implies that the magnetic field,
B x  , is an axial vector. At the end one can easily check  that equations (2) and (4) are

invariant under parity provided that E  x  is a polar vector and B x is an axial vector.
Interstingly enough it is enough to take the electric charge density,  e x  as a scalar,
which it is by definition and the rest follow.

Next we introduce the magnetic charge density and the magnetic current density:

                                                   ∇⋅E = 4e                               (1)
      
                                                   ∇⋅B = 4m                               (2)

                                                   ∇⃗×E⃗ =
4π

c
J⃗m−

1
c

∂ B⃗
∂ t

               (3)         

                                                    ∇⃗×B⃗ =
4π

c
J⃗ e+

1
c

∂ E⃗
∂ t

                (4)

In this case (2) implies that m  must be a pseudo-scalar if the magnetic filed is an axial
vector and (2) is invariant under parity. Similarly if (3) is invariant under parity and the
electric field is a polar vector, it must be that the magnetic current density, Jm , is an axial
vector.
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