
Advanced Particle Physics, Physics Department, University of Ioannina 

Particle Physics Homework Assignment 10

Prof. Costas Foudas  30/01/22

Problem 1:  Show that σ2 σ⃗*
=−σ⃗ σ 2  

Solution: 

The Pauli matrices satisfy 

        (σ1
)

*
= σ1 , (σ2

)
*

= −σ2 , (σ3
)

*
= σ3  and σ iσ j

= i εijk σk .

Therefore we have 

(a) σ2
(σ 2

)
*

= −σ2σ2

(b)  σ2
(σ1

)
*

= σ 2σ1
= i ε213 σ3

= −i ε123 σ3
= −i σ 3                    (1)

       σ1σ2
= i ε123σ 3

= i σ 3                                                            (2)

         (1) (2) ⇒ σ 2
(σ1

)
*

= −σ1σ 2

(c)  σ2
(σ 3

)
*

= σ2σ3
= i ε231σ1

= i ε123σ1
= i σ1                           (3)

       σ3σ2
= i ε321σ1

= −i σ1                                                           (4)

(3) (4) ⇒ σ 2
(σ3

)
*

= −σ3σ 2
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Problem 2: Show that in the Pauli Dirac representation the matrix C satisfies 

                                   C = −C−1
= −C +

= −CT

Solution:

a) C C−1
= 1 ⇒ i γ 2γ0C−1

= 1 ⇒ C−1
= (−i)(−1)(−1)γ2 γ0

= −C

b) C+
= (i γ2 γ0

)
+

= −i (γ0
)

+
(γ2

)
+

= −i γ0 γ0 γ2γ0
= −i γ2 γ0

= −C

c) CT
= (iγ2 γ0

)
T

= i(γ0
)
T
(γ 2

)
T

= i γ0 γ 2
= −i γ2γ 0

= −C

Problem 3:  Show that

Ψ c = C Ψ̄T and Ψ̄ c = −Ψ TC−1

Solution:

a) Ψ c = C γ0Ψ *
= C (γ0

)
Τ
(Ψ +

)
Τ

= C (Ψ +γ0
)
Τ

= CΨ̄ Τ

b) Ψ̄ c = (C γ0Ψ *
)

+γ0
= Ψ Τ

(γ0
)

+C+
= −Ψ Τ γ0C γ0

= Ψ Τ γ0 γ0C = −Ψ Τ C−1
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Problem 4: As shown in Homework Assignment 9 the spinor

                                     Ψ ( x) = √E ( 1
σ⃗⋅p̂) χ 2 e−ipx                

has negative helicity and can describe a neutrino with negative helicity which has been
detected  in  nature.  Show that  the  charge conjugate  of  this  spinor  represents  an anti-
neutrino with  negative  helicity which has not been detected in nature. This means that
the interaction which is responsible for the production of neutrinos violates the charge
conjugation symmetry.

Solution:

Ψ C( x) = [Ψ (x )]
c

= i γ2
[Ψ ( x)]* = i( 0 σ2

−σ2 0 )√E( 1
σ⃗*

⋅p̂) χ 2e+ipx ⇒

Ψ C( x) = i√E(σ
2 σ⃗*

⋅p̂
−σ2 ) χ 2 e+ipx = i √E(σ⃗⋅p̂ (−σ2

)

−σ2 ) χ 2e+ipx ⇒

Ψ C( x) = √E( σ⃗⋅p̂1 )(−i σ 2
) χ2 e+ipx = −√E( σ⃗⋅p̂1 ) χ 1 e+ipx ⇒

Ψ C( x) = −u3
(− p⃗ ;m=0)e

+ipx
= −υ2

( p⃗ ;m=0)e
+ipx

The resulting spinor has positive energy and negative helicity. This can be demonstrated 
as follows. 

                          Σ⃗⋅p̂ u3
( p⃗ ; m=0) = u3

( p⃗ ;m=0) ⇒

                          −Σ⃗⋅p̂ u3
(− p⃗ ;m=0) = u3

(− p⃗ ;m=0) ⇒

                          Σ⃗⋅p̂ υ2
( p⃗ ; m=0) = −υ2

( p⃗ ; m=0)

Hence, the spinor we obtain after charge conjugating a negative helicity neutrino spinor is
an anti-neutrino spinor with negative helicity. Experimentally we have not observed anti-
neutrinos  with  negative  helicity  so  the  weak  interaction  violates  change  conjugation
symmetry.  In this  discussion we have assumed that  the mass  of the neutrino is  zero.
Today we know that neutrinos have non-zero mass however small it may be. Hence, in
principle,  although  suppressed  as  shown  in  Lecture  9,  anti-neutrinos  with  negative
helicity should exist in nature. This example demonstrates also that charge conjugation
changes particle to anti-particle without altering helicity.
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Problem 5: Use the charge conjugate spinor of a neutrino with negative helicity from the 
previous problem

                                  Ψ C( x) = −√E( σ⃗⋅p̂1 ) χ 1 e+ipx

which as we have seen has negative helicity and calculate its parity inverted spinor
Ψ
PC .

Solution:

               Ψ PC ( x) = (−1)γ0[√E( σ⃗⋅p̂1 ) χ 1 e+ipx '] x⃗ '=−x⃗ , x0'=x 0
⇒

               Ψ PC ( x) = (−1)√E(1 0
0 −1)(σ⃗⋅p̂1 ) χ 1[e+ipx' ] x⃗ '=−x⃗ , x0 '=x 0 ⇒

               Ψ PC ( x) = (−1)√E( σ⃗⋅p̂−1 ) χ1 e
+ip0 x0−i p⃗⋅(− x⃗)

⇒

               Ψ
PC

( x) = √E( σ⃗⋅(− p̂)
1 ) χ 1 e+ip

0 x0
−i (− p⃗)⋅⃗x

⇒

               Ψ
PC

( x) = u(3)
( p⃗ ;m=0)e+ ip

0 x0
−i (− p⃗)⋅⃗x

⇒

               Ψ
PC

( x) = υ(2)(− p⃗ ; m=0)e+ip
0 x0

−i (− p⃗)⋅x⃗

However,

   Σ⃗⋅p̂ u3
( p⃗ ; m=0) = u3

( p⃗ ;m=0) ⇒ Σ⃗⋅p̂ υ2
(− p⃗ ; m=0) = υ2

(− p⃗ ;m=0)

Hence, the combined PC operation transformed a negative helicity neutrino to a positive 
helicity anti-neutrino which exists in nature. Alternatively, one could have started by 
applying parity first and then charge conjugation. The result would have been the same up
to a phase.

                        Ψ
CP

(x ) = −υ(2)
(− p⃗ ; m=0)e+ip

0 x0
− i(− p⃗)⋅x⃗
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Problem 6: Consider the Majorana representation of the Dirac matrices which is given by

γ0
= ( 0 σ 2

σ 2 0 ) , γ1
= i(σ

3 0
0 σ3)   , γ2

= ( 0 −σ2

σ2 0 ) , γ3
= −i(σ

1 0
0 σ1)

Show that in this representation Ψ c = Ψ * .  In this representation one can define a 
spinor χ = Ψ+Ψ c . Show that χ, provided that it represents a neutral particle, is also 
a solution of the Dirac equation which is real and satisfies χ = χ c . In other words it 
represents a  particle which is identical to its antiparticle.

Solution: In a similar was as in the lecture we setup the equations for particle and 
antiparticle.

                                 [ iγ μ(∂μ−i e Aμ)−m ]Ψ (x ) = 0                      (1)

                                 [ iγ μ(∂μ+i e Aμ)−m ]Ψ c( x) = 0                     (2)

                                 Ψ c = C γ0Ψ *
⇒ Ψ *

= γ0C−1Ψ c                (3)

From (1) and (3) we have that

                                 [−i(γ μ)*
(∂μ+i e Aμ)−m ]γ0C−1Ψ c (x ) = 0    (4)

In the Majorana representation (γ0
)
Τ

= −γ 0 . 

Therefore (γμ)+
= γ0 γμγ0

⇒ (γμ)*
= γ0

(γ μ)T γ0                         (5)

From (4) and (5) we have that

                        [−i γ0
(γμ)T γ0

(∂μ+i e Aμ)−m ]γ0C−1Ψ c ( x) = 0 ⇒

                        [−i C γ0 γ0
(γ μ)T γ0 γ0C−1

(∂μ+i e Aμ)−m ]Ψ c( x) = 0 ⇒

                       [−i C (γ μ)TC−1
(∂μ+i e Aμ)−m ]Ψ c (x ) = 0             (6)

By comparing (2) and (6) we conclude that if the transformation described in (3) exists if 
one can find a matrix C which satisfies
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                       C (γ μ)TC−1
= −γμ                                                      (7)

This  result  is  no surprise  of course since we have shown already in Lecture 10 in  a
representation independent way that this must be true if a charge conjugation operator is
to be found.

In the Majorana representation we have that

(γ0
)
Τ

= −γ0
(γ1

)
Τ

= +γ1
(γ2

)
Τ

= +γ2
(γ 3

)
Τ

= +γ3   (8)

Hence, from (7) and (8) we have that

     [C ,γ0
] = 0 , {C , γ1} = 0 , {C ,γ2 } = 0 , {C ,γ3 } = 0    (9)

Clearly (9) implies that 

                                                C = γ0                                                     (10)

Substituting (10) in to (3) one gets

                                   Ψ c = C γ0Ψ *
⇒ Ψ c = Ψ *

Hence, in the Majorana representation the charge conjugation operation is simply the 
complex conjugation operation.

Next define 

                                    χ = Ψ+Ψ c = Ψ+Ψ*
⇒ χ = χ c

χ is clearly real and is a solution of the Dirac equation if χ is neutral. Hence, χ represents 
a neutral fermion which is identical to its antiparticle. People have speculated that the 
neutrino may be a majorana particle but this has not been confirmed experimentally.
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Problem 7: Show that the particle and antiparticle spinors can be expressed as

                        (a)            u(s)
( p⃗ ,m) =

γμ pμ+m

√E+m
× u(s)

(0,m)

                        (b)          υ(s)
( p⃗ ,m ) =

−γμ pμ+m

√E+m
× υ(s )(0,m)

where

                                   u(1)
(0,m) = (

1
0
0
0
)  ' u(2)

(0,m) = (
0
1
0
0
)  '

                                   υ(1)
(0,m ) = (

0
0
0
1
) ,  υ(2)

(0,m) = (
0
0
1
0
)

Solution:

a)
γμ pμ+m

√E+m
=

1
√E+M

( p0 γ0
− γ⃗⋅p⃗+m) =

1
√E+M [ p

0
+m −σ⃗⋅p⃗
σ⃗⋅p⃗ − p0

+m] ⇒

γμ pμ+m

√E+m
= √E+m[ 1

−σ⃗⋅p⃗
E+m

σ⃗⋅p⃗
E+m

−p0
+m

E+m
] ⇒

√E+m[ 1
−σ⃗⋅⃗p
E+m

σ⃗⋅p⃗
E+m

−p0
+m

E+m
]× u(s )

(0,m) = √E+m(
1
σ⃗⋅⃗p
E+m) × χ s = u(s )

( p⃗ ,m)

where χ 1 = (1
0) and χ 2 = (0

1)
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b)
−γ μ p μ+m

√E+m
=

1
√E+M

(−p0 γ0
+ γ⃗⋅p⃗+m) =

1
√E+M [−p0

+m σ⃗⋅⃗p
−σ⃗⋅p⃗ p0

+m] ⇒

   
−γ μ p μ+m

√E+m
= √E+m[

− p0
+m

p0
+m

σ⃗⋅p⃗
E+m

−σ⃗⋅p⃗
E+m

1 ] ⇒

−γ μ p μ+m

√E+m
υ(s )(0,m) = √E+m[

−p0
+m

p0
+m

σ⃗⋅p⃗
E+m

−σ⃗⋅p⃗
E+m

1 ]υ(s)
(0,m) ⇒

−γ μ p μ+m

√E+m
υ(s )

(0,m) = √E+m[
σ⃗⋅p⃗
E+m

1 ]υ(s )
(0,m) = υ( s)

( p⃗ ,m )
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Problem 8: Show that

                             (γμ pμ+m )γ0
(γμ pμ+m) = 2E (γ μ p μ+m )

Solution:

(γμ pμ+m)γ0
(γμ pμ+m) = γμ pμγ

0γ ν pν + m(γ μγ0
+γ0 γμ) pμ + m 2γ0     (1)

γμ pμγ
0 γν pν = γμγ0 γ ν pμ pν = γ μ(−γ νγ0

+2 g ν0) pμ pν ⇒

γμ pμγ
0 γν pν = −γμγ νγ0 pμ pν + 2 p0 γμ p μ = − p2 γ0

+ 2E γμ pμ ⇒            

γμ pμγ
0 γν pν = −m2 γ0

+ 2E γμ pμ                                                               (2)

m (γμγ0
+γ0γ μ) pμ = m 2 g μ0 pμ = 2m p0

= 2Em                                   (3)

and from (1), (2), and (3) we have that

(γμ pμ+m )γ0
(γμ pμ+m) = 2Em + 2E γμ pμ = 2Ε (γ μ p μ+m)
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Problem 9:  Show that 

                          (a)     ∑
α=1

2

u(α)( p⃗ ,m) ⊗ ū(α)( p⃗ , m) = γμ pμ+m   

                           (b)    ∑
α=1

2

υ(α)( p⃗ ,m) ⊗ ῡ(α)( p⃗ ,m) = γ μ pμ−m

Solution:  

(a) From exercise 7 we have that

u(s)
( p⃗ ,m ) =

γμ pμ+m

√E+m
× u(s)

(0,m) ⇒ ū(s)
( p⃗ ,m) = ū(s )

(0,m) ×
γ μ p μ+m

√E+m
(1)

Hence, using (1) we have that

∑
α=1

2

u(α)
( p⃗ ,m)⊗ū(α)

( p⃗ ,m) =
γ μ p μ+m

√E+m
×∑

α=1

2

u(α)
(0,m)⊗ū(α)

(0,m)×
γμ pμ+m

√E+m
    (2)

However,  

∑
α=1

2

u(α)
(0,m)⊗ū(α)

(0,m) = [
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

] =
1+γ0

2
                                             (3)

and from (2) and (3) we have that

∑
α=1

2

u(α)
( p⃗ ,m)⊗ū(α)

( p⃗ ,m) =
γ μ p μ+m

√E+m
×

1+γ0

2
×
γ μ p μ+m

√E+m
=

1
2(E+M )

[(γ μ p μ+m)(γ μ p μ+m)+(γμ pμ+m)γ0
(γμ pμ+m)]                                (4)

However,

(γμ pμ+m)(γμ pμ+m) = 2m (γμ pμ+m)                                                                (5)
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Using the results from exercise 8 and (4) and (5)  we have that

∑
α=1

2

u(α)( p⃗ ,m)⊗ū(α)( p⃗ ,m) =
1

2(E+M )
[2m (γμ pμ+m)+2E (γ μ p μ+m)] ⇒

∑
α=1

2

u(α)( p⃗ ,m)⊗ū(α)( p⃗ ,m) = γμ pμ+m

(b)  From exercise (7) we have that 

υ(s)( p⃗ ,m ) =
−γμ pμ+m

√E+m
× υ(s )(0,m)  , ῡ(s)( p⃗ ,m ) = ῡ(s )(0,m) ×

−γμ pμ+m

√E+m

  and using them we get

∑
α=1

2

υ(α)( p⃗ ,m)⊗ ῡ(α) ( p⃗ , m) =

                               
(−γμ pμ+m)

√E+m
[∑
α=1

2

υ(α)
( p⃗ ,0)⊗ ῡ(α)

( p⃗ ,0)]
(−γμ pμ+m)

√E+m
           (1)

However, 

[∑
α=1

2

υ(α)
( p⃗ ,0)⊗ ῡ(α)

( p⃗ ,0)] = [
0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

] =
γ0

−1
2

                                (2)

and by substituting (2) into (1) you get 

∑
α=1

2

υ(α)( p⃗ ,m )⊗ ῡ(α) ( p⃗ , m) =
1

E+m
(−γμ pμ+m)

γ0
−1
2

(−γμ p μ+m )               (3)

It is easy to show that

(−γμ pμ+m)γ0
(−γ μ p μ+m) = 2E (+γ μ pμ−m)                                                (4)

(−γμ pμ+m)(−γ μ p μ+m ) = 2m(m−γ μ p μ)                                                       (5)
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and from (3), (4) and (5) we have that

∑
α=1

2

υ(α)( p⃗ ,m )⊗ ῡ(α) ( p⃗ , m) =
1

2(E+m)
[2E (γμ pμ−m)−2m(−γμ pμ+m)] ⇒

∑
α=1

2

υ(α)( p⃗ ,m )⊗ ῡ(α) ( p⃗ , m) = (γ μ p μ−m)
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