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Helicity and Chirality
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Helicity: As we have seen before the helicity operator is defined as:

                                             Σ⃗⋅p̂ = ( σ⃗⋅p̂ 0
0 σ⃗⋅p̂)                                                     (9.1)

where  σ⃗ = (σ 1 , σ2 , σ3
) are  the  2x2  Pauli  matrices  and  p̂ = p⃗/∣p⃗∣  where p⃗  is

momentum operator  and ∣⃗p∣  is  the  eigenvalue  of  p⃗ .  As  seen  from (1)  the  helicity
eigenvalues represent the projection of the particle spin at the direction of motion. It
is easy to show that the helicity operator commutes with the Dirac hamiltonian:

                                                     [ Σ⃗⋅p̂ , H ] = 0                                                       (9.2)  

Hence,  the Dirac hamiltonian and helicity have a common set of eigenvectors. This
is also the reason for the two-fold degeneracy found for every energy eigenstate of
the Dirac hamiltonian.  It is  easy to  show explicitly that  the solutions  of  the Dirac
equation are indeed eigenvectors of the helicity operator:

Consider the first two positive solutions of the Dirac Equation: 

            Ψ(s)
( x) = N (

1
σ⃗⋅⃗p

E+m ) χ s e−ip x  where  s=1, 2 χ1
=(1

0) χ 2
=(0

1)

by applying the helicity operator we have:
                       

            ( Σ⃗⋅p̂)Ψ (s)( x) = √ E+M (
σ⃗⋅(−i ∇⃗ )

p
0

0
σ⃗⋅(−i ∇⃗ )

p
)( 1

σ⃗⋅⃗p
E+m) χs e−ip x ⇒

                

            ( Σ⃗⋅p̂)Ψ (s)
( x) = √ E+M (σ⃗⋅p̂ 0

0 σ⃗⋅p̂)(
1

σ⃗⋅p⃗
E+m ) χse−ip x ⇒

            ( Σ⃗⋅p̂)Ψ (s)
( x) = √ E+M (

σ⃗⋅p̂

σ⃗⋅p̂
σ⃗⋅p⃗

E+m) χ se−ip x ⇒
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                  ( Σ⃗⋅p̂)Ψ (s)
( x) = √ E+M (

1
σ⃗⋅p⃗

E+m) σ⃗⋅p̂χ s e−ip x ⇒

                  ( Σ⃗⋅p̂)Ψ (s)
( x) = √ E+M (

1
σ⃗⋅p⃗

E+m)(±1) χ s e−ip x ⇒

                  ( Σ⃗⋅p̂)Ψ (s)
( x) = (±1)√ E+M (

1
(σ⃗⋅⃗p)

(E+m)) χ se−ip x
⇒

                                        ( Σ⃗⋅p̂)Ψ (1,2)( x) = (±1)Ψ (1,2)( x)

where the plus corresponds to s = 1 and the minus to s = 2.

Hence,  we  have  shown  that  the  positive  energy  eigenvectors   of  the  Dirac
hamiltonian are also eigenvectors of the helicity operator. In the last step we have
used the relationship   σ⃗⋅p̂ χ s

= (±1) χs  which can easily be proven by selecting the
unit  vector  at  the  direction  of  the  z-axis.   The  same is  true  for  the  negative  energy
solutions albeit  a key but subtle difference which we will address in the next Lecture
which is about anti-particles.

It is important to notice that the solutions of the Dirac equation are eigenvectors of the
helicity operator and in general not eigenvectors of the spin operator:

                                                  Σ⃗ = (σ⃗ 0
0 σ⃗)

except at the particle rest frame where the momentum is zero. Why should they be 
anyway ? The spin operator does not commute with the hamiltonian as we have seen 
before. Therefore the helicity operator has the following properties:

(a)  Helicity is a good quantum number: The helicity is conserved always because it
commutes with the Hamiltonian. That is, its value does not change with time within a
given reference frame.  As we have  seen before  (2)  is  valid  for  both  massive  and
massless  fermions.  Hence,  helicity  is  conserved  for  both  massive  and  massless
particles.

(b) Helicity is not Lorentz invariant: This is obvious since helicity is a product of a 3-
vector with an axial vector. One can think of a gedanken experiment where a spin ½ 
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fermion is moving relative to an inertial observer and has positive helicity. A second
observer who is moving faster than the fermion overcomes the fermion and for him the
fermion momentum has flipped its sign whilst its spin remains the same. Hence, the
second  observer  measures  the  opposite  helicity  than  the  first.  This  gedanken
experiment demonstrates why helicity is not a Lorentz invariant quantity.

Chirality or Handedness:

Consider now the chirality/handedness operator in the Pauli-Dirac representation:

                                             γ5 = i γ0 γ1 γ2 γ3
= (0 I

I 0)
which satisfies:

                                              {γ5, γ
μ
} = 0  

This anti-commutation relationship is true in any Dirac matrix representation. Lets 
evaluate the commutator of the chirality operator with the Dirac Hamiltonian:

   [γ5 , H ] = [γ5 , α⃗⋅p⃗+m β ] = (0 I
I 0)( m σ⃗⋅p⃗

σ⃗⋅⃗p −m)−( m σ⃗⋅p⃗
σ⃗⋅p⃗ −m)(0 I

I 0) ⇒

                       [γ5 , H ] = ( σ⃗⋅⃗p −m
m σ⃗⋅p⃗)−(σ⃗⋅p⃗ m

−m σ⃗⋅p⃗) ⇒

                                   [γ5 , H ] = 2 m(0 −I
I 0 )

So the chirality/handedness operator does not commute with the hamiltonian unless if the
mass is zero.  Hence, although we don't know yet the physical observable which is
associated with this operator we do know that it is conserved and corresponds to a
good quantum number only if the mass is zero or can be neglected  as is the case
when the particle energy is far larger than its mass. 

Next  we  will  study certain  properties  of  the  chirality  operator  by means  of  solving
exercises which demonstrate these properties.

Exercise 1:  Consider the Dirac Hamiltonian for massless fermions H = α⃗⋅p⃗ . Use the
anti-commutation  relationships {γ5, γ

μ
} = 0 which  are  representation  independent  to

show that the result [γ5 , H ] = 0 is true in any representation provided that the mass is
zero.
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Solution:  

        [H ,γ5] = [γ0 γi pi , γ5] = p i {γ0[γi , γ5]+[γ0, γ5]γ
i} ⇒

       [ H ,γ5] = [γ0 γi pi , γ5] = p i
{γ0

(γ i γ5−γ5 γi
)+(γ0 γ5−γ5 γ0

)γi
} ⇒

       [ H ,γ5] = [γ0 γi pi , γ5] = p i {γ0(γ i γ5+γ5γ i)−(γ0 γ5+γ5 γ0)γ i} ⇒

                                                      [H ,γ5] = 0

If you try adding a mass term you get :

                    [ H ,γ5] = [ α⃗⋅p⃗+mγ0 , γ5] = m(γ0 γ5−γ5 γ0)=−2mγ5γ 0

Exercise  2: Show  explicitly  that  for  massless  fermions  the  chirality  and  the  Dirac
hamiltonian  have  a  common  set  of  eigenfunctions  which  is  expected  because  they
commute.

Solution:  This  is  easy  to  show:  The  eigenvectors  of γ5 are  Ψ±
= C( 1

±1) with

eigenvalues ±1 respectively.  Consider  the  positive  energy  solutions  of  the  Dirac
Equation:

                                   Ψ(s)
( x) = √ E+M (

1
σ⃗⋅p⃗

E+m ) χ se−ip x

If the mass is zero we have that:    

                  Ψ(s)
( x) = √ E+M ( 1

σ⃗⋅p̂) χse−ip x
= √E+M ( 1

±1) χ s e
−ip x

        
which is obviously an eigenfunction of the chirality operator.

Exercise 3:  Show that for massless fermions if Ψ is a solution of the Dirac equation then
γ5 Ψ is also a solution of the same equation.

Solution:   The Dirac equation,
                                   
                                       [ i γμ

∂μ−m ]Ψ ( x) = 0   

for massless fermions becomes:  
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                                             i γ μ
∂μΨ ( x) = 0 .    

Using  {γ5, γ
μ
} = 0  we get:

                                            iγ μ
∂μ (γ5 Ψ ( x)) = 0  

Associating Chirality with an observable:

Lets now investigate the physical meaning of the chirality. Consider the massless Dirac 
equation:

                                          i γ μ
∂ μΨ ( x) = 0

Let  Ψ ( x) = u( p⃗)e−ip x  be a solution of the Dirac equation. By substituting we get
that:

                           (γ0 p0− γ⃗⋅p⃗)u ( p⃗) = 0 ⇒

                            γ0 p0 u( p⃗) = γ⃗⋅p⃗ u( p⃗) ⇒

                            γ5 γ0 γ0 p0 u( p⃗) = γ5 γ0 γ⃗⋅p⃗ u( p⃗) ⇒

                            p0 γ5u ( p⃗) = γ5 γ0 γ⃗⋅p⃗ u( p⃗)                                                            (9.3)

If this is a positive energy solution then we have that p0
>0 and (3) becomes:

                                    γ5 u( p⃗) = γ5γ0 γ⃗⋅p̂ u( p⃗)                                                      (9.44) 

If this is a negative   energy   solution then, p0
<0 and 

                                    γ5 u( p⃗) = −γ5 γ0 γ⃗⋅p̂ u( p⃗)                                                     (9.5)

Lets compute the matrix product on the right side:

                    γ5 γ0 γ⃗ = (0 I
I 0)( I 0

0 −I )( 0 σ⃗
−σ⃗ 0) = ( σ⃗ 0

0 σ⃗) = Σ⃗ ⇒

     
                                                Σ⃗ = γ5γ0 γ⃗                                                                 (9.6)

and this is the definition of the spin operator in terms of the gamma matrices valid in
any representation.  From (9.4) (9.5) and (9.6) we have that for: 
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           p0
>0 ⇒       γ5 u( p⃗) = (σ⃗⋅p̂ 0

0 σ⃗⋅p̂)u( p⃗) = Σ⃗⋅p̂ u( p⃗)                    (9.7)

and

           p0
<0 ⇒  γ5 u( p⃗) = −(σ⃗⋅p̂ 0

0 σ⃗⋅p̂)u( p⃗) = − Σ⃗⋅p̂ u( p⃗)                   (9.8)

Using (9.7) and the fact that the Dirac spinors are eigenvectors of the helicity operator i.e.

                                                  [ Σ⃗⋅p̂ ]u( p⃗) = ±u( p⃗)

we conclude that when acting on  positive energy solutions the operators:

                                          P L=
(1−γ5)

2
=

(1−Σ⃗⋅p̂)
2

and 

                                          P R=
(1+γ5)

2
=

(1+Σ⃗⋅p̂)

2

project to negative and positive helicity states respectively.  Equivalently,  using (9.8),
when the above operators act on negative energy solutions  they project to positive and
negative helicity states respectively. Hence, we have the physical interpretation for the
chirality operator: The chirality or handedness is the same as the helicity operator (up
to a sign) when the particle mass is zero or it can be neglected. The operators P L and
P R  are commonly referred as left handed and right handed projection operators.

Projection Operator Summary:

In general if Ψ+ is a positive energy spinor and Ψ− is a negative energy spinor we have 
that:

                                
1+γ5

2
Ψ ±

= ±
N
2 (+1

+1)(1±σ⃗⋅p̂) χ s

                                
1−γ5

2
Ψ ±

= ±
N
2 (+1

−1)(1∓σ⃗⋅p̂) χ s

or alternatively 
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1±γ5

2
Ψ +

= +
N
2 (+1

+1)(1± σ⃗⋅p̂) χ s

                               
1±γ5

2
Ψ −

= −
N
2 (+1

±1)(1∓σ⃗⋅p̂) χ s

As before   χ s
= (1

0) , (0
1)   for s = 0, 1.

Conclusions on Chirality or Handedness: 

For massless particles the chirality or handedness operator has the following properties:

(a)  It is Lorentz invariant  (it is a constant matrix). 

(b)  It is conserved. 

(c)  It has a common set of eigenvectors with the Dirac Hamiltonian.

(d)  It has the same properties with the Helicity operator, which gives it a physical    
  meaning.

Helicity and Chirality for massive particles:

So far we considered chirality/handedness for massless fermions. However,  the 'chirality
properties' of massive fermions are also of interest eventhough, in this case, chirality is
not a good quantum number,. The reason for this is that most particles are massive and
the charged current weak interaction couples to  left handed (negative chirality) spinors
(V-A theory). Hence, we need a way to associate these left handed spinors with positive
an negative helicity states.

Consider the identity:

           1−
σ⃗ p⃗

E+M
=

1
2(1−

∣ p⃗∣
E+M )(1+σ⃗⋅p̂)+

1
2(1+

∣⃗p∣
E+M )(1−σ⃗⋅p̂)                (9.9)

where E , M , p⃗ are the energy, mass and momentum of a fermion respectively.

Next consider a  left handed operator acting on a positive energy Dirac solution:

Lecturer: Prof. C. Foudas, Physics F3.303, Costas.Fountas@cern.ch 7

mailto:Costas.Fountas@cern.ch


Lecture 9

Particle Physics, 4th year undergraduate, University of Ioannina                             

  Ψ L =
(1−γ5)

2
Ψ (x ) =

N
2 (+1 −1

−1 +1)(
1

σ⃗⋅⃗p
E+M ) χ s e

−ipμ xμ ⇒     

  Ψ L =
N
2 (+1

−1)(1−
σ⃗⋅⃗p

E+Μ ) χ s e
−ip μ x μ   and using (9.9) we get that:

  Ψ L =
N
2 (+1

−1)[
1
2
(1−

∣ p⃗∣
E+M

)(1+ σ⃗⋅p̂)+
1
2
(1+

∣⃗p∣
E+M

)(1−σ⃗⋅p̂)] χ s e
−ip μ x μ  (9.10)

The first term in (9.10) projects to positive helicity states and the second term to negative
helicity states.  However,  the coefficient  of the positive helicity term vanishes at  high
energies where the particle mass can be neglected while the coefficient of the negative
helicity term approaches the value of one at high energies.

One can show that at energies much larger than the particle mass these coefficients 
become:

1−
∣⃗p∣

E+M
=1−√ E2

−M 2

(E+M )
=1−

√1−M 2
/ E2

(1+M / E )
=1−(1−

M 2

2 E2
+..)(1−

M
E

+..) ⇒

                                         1−
∣⃗p∣

E+M
≈

M
E

  (order of M/E).

and 

1+
∣⃗p∣

E+M
=1+√ E2

−M 2

(E+M )
=1+

√1−M 2
/ E2

(1+M / E )
=1+(1−

M 2

2 E2
+..)(1−

M
E

+..) ⇒

                                      1+
∣⃗p∣

E+M
≈ 2−

M
E

 to order of M/E.

Hence, 

              Ψ L ≈
N
2 (+1

−1)[( M
2 E )(1+σ⃗⋅p̂)+(1−

M
2E )(1−σ⃗⋅p̂)] χ s e

−ipμ x μ

Therefore the left handed operator acting on positive energy states of the Dirac equation 
gives:

Ψ L =
(1−γ5)

2
Ψ (x ) ≈

N
2 (+1

−1)[( M
2E )(1+σ⃗⋅p̂)+(1−

M
2E )(1−σ⃗⋅p̂)] χ se

−ipμ x μ
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As seen here the left  handed positive energy spinor has contributions from both
positive and negative helicity components. However the negative helicity component is
dominant and becomes 100% in the case where the mass is much smaller than the energy
and can be neglected. The positive helicity component decreases ∼M / E and approaches
zero as the energy increases.

The Measurement of the Neutrino Helicity – The  Goldhaber, Grodzins
and Sunyar Experiment:

One of the most clever experiments in the history of physics was designed by Goldhaber, 
Grodzins and Sunyar1 in 1957  to measured the helicity of  the electron neutrino:

Figure  1:  Shown at the left is the decay chain of  63Eu152 which is a 0- state and undergoes electron

capture to give  first 62 Sm152*  and a 840 KeV electron neutrino. 62 Sm152*  is an 1- excited state of 62 Sm152.

62 Sm152*  subsequently decays 10%  of  the time  to a photon (961 KeV) and 62 Sm152 which is a 0+ state

and 14% of the time to a photon (837 KeV) and a 2+ state which then decays to 62 Sm152.

The experiment used the decay chain of the element Europium,  63Eu152  which had been
studied earlier by L. Grodzins2. The decay chain is shown in Fig. 1 (left) and the resulting
gamma-ray spectrum from the  62Sm*152 decay is  shown in  Fig.  1  (right).  The  initial
nucleus of Europium is an 0 - state which undergoes electron capture (charged current
interaction)  to give an excited Sm* nucleus which is  a 1- and a neutrino.  Since the
Europium is a spin-zero state the sum of the Samarium and neutrino spins must be equal
to the spin of the electron which was captured by the Europium nucleus as shown in Fig.
2. 

1 M. Goldhaber, L. Grodzins, A.W. Sunyar, Phys. Rev. 109, 1014, (1958).
2 L. Grodzins, Phys. Rev. 109, 1014, (1958).
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Hence,  the  polarization  of  the  neutrino  (left/right  handed)  is  always  the  same as  the
polarization of the Sm*. In other words measuring the Sm* polarization is one and the
same thing as measuring the neutrino polarization.

Figure  2: Europium,  63Eu152 ,  undergoing  electron  capture  from the K-Shell.  The  z-component  of  the
electron  angular  momentum is  ½ before  the  capture.  Therefore  the  z-component  of  the  total  angular
momentum should also be ½ after the capture. Hence, the spins of the  63Sm152 *  and the neutrino should
always be opposite so that the result  is always 1/2. However, the neutrino and 63Sm152  move in opposite
directions to conserve momentum. Therefore the neutrino and  63Sm152 *  polarizations must always be the
same.

However, measuring the  62Sm*152  polarization seems a hard thing to do also until  one
realizes that it decays electromagnetically to  62Sm152, a spin-zero state,  and a photon as
shown in Fig. 3. Conservation of angular momentum requires that the photon spin points
to the same direction as the  62Sm*152  spin (they are both 1- states). Hence, if the photon is
emitted at the direction of motion of the 62Sm*152  it will have the same polarization as the
62Sm*152.  Therefore,  photons emitted at  the direction of   62Sm*152   have the same
polarization/helicity as the electron neutrinos (up to a factor of ½) . The experimental
strategy was to select only those photons which are emitted at the direction of the
62Sm*152 whose  polarization  is  directly  correlated  to  the  electron  neutrino
polarization and measure their polarization.

Lecturer: Prof. C. Foudas, Physics F3.303, Costas.Fountas@cern.ch 10

mailto:Costas.Fountas@cern.ch


Lecture 9

Particle Physics, 4th year undergraduate, University of Ioannina                             

Goldhaber, Grodzins and Sunyar setup their experiment to measure two quantities: The
photon direction relative to the 2Sm*152 direction as well as the photon polarization. Both
measurements  rested  on  deep  understanding  of  two  physical  processes:  Compton
Scattering and Resonant Scattering of gamma-ray photons.

Figure  3: The excited  62Sm*152  state decays to Samarium and  a photon. The photon spin is always the
same as the  direction of the Samarium spin to conserve angular momentum regardless which direction the
photon is emitted (forward backward).

The  apparatus  of   Goldhaber,  Grodzins  and  Sunyar  is  shown  in  Fig.  4  (left).  The
Europium source was placed in an analyzing magnet.  The magnetic field was used to
align  the  spins  of  the  atomic  electrons  in  the  magnet  material  at  a  certain  direction
(up/down). In the magnet the  63Eu152   nuclei decay according to the chain described in
Fig. 1 (left) resulting to 62Sm152  (scalar) and a photon (polar-vector). The polarization of
the outgoing photon from the Samarium decay was measured using the properties  of
gamma-ray  Compton Scattering by polarized atomic electrons which were  previously
studied  by L.  Page3.  According  to  Pages's  studies,  which  were  both  theoretical  and
experimental, the gamma-ray photons from the 62Sm*152 decay interact with the atomic 

3 S.B Gunst and L.A. Page, Phys. Rev. 92, p970,  Nov. 1953.   L. A. Page, Phys. Rev. 106, p394, 
      May 1957.
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electrons  differently  depending  upon  the  polarization  of  the  atomic  electrons  in  the
magnet.  As seen in  Fig. 5,   if  the photon spin and the electron spin are at  the same
direction the photon cannot change the electron spin. Hence, it cannot be absorbed. If the
electron spin is opposite to that of the photon then the photon can be absorbed to change
the electron spin by one unit (½ -1 = - ½ ).  In other words: 

 The photons which have their spins aligned with the spin of the atomic electrons
will penetrate the magnet material and will exit from the other side. 

 The photons which have their spins aligned opposite to the spin of the atomic
electrons will be absorbed by the atomic electrons in the magnet and will not exit
the magnet.  

Hence, by controlling the magnetic field one can chose the polarization of the outgoing
photons.

To  measure  the  direction  of  the  photon  relative  to  the  Sm*  motion  they  used  a
phenomenon called Resonant Scattering4:  Consider a gamma-ray photon emitted from
the electromagnetic nuclear transition of the  62Sm*152  nucleus. In the reference frame of
the emitting nucleus (62Sm*152  ) the photon has a fixed energy which corresponds to the
difference between the energies of the final and the initial states (up to a  natural width). 

However in computing the photon energy relative to the Lab frame one has to take in to
account two phenomena: 

1) As the 62Sm*152 disintegrates to a 62Sm152  ground state and a photon, part of the initial
energy, Eγ

2
/ 2Mc2 is transferred to the 62Sm152 nucleus as recoil energy ( Eγ , M

is the photon energy and the  62Sm152 mass). Hence, the photon appears to have lower
energy at the Lab frame.

2) The 62Sm*152  nuclei are not at rest because they are the products of the electron capture
reaction and they are recoiling against the neutrino which is commonly refereed to as
preceding radiation. The motion of the parent, 62Sm*152 , nucleus will Doppler-shift the
photon energy in a way that is of course depended upon the photon direction relative to
the 62Sm*152  direction.

The  phenomenon  of   Resonant  Scattering  occurs  if  the  gamma-rays  emitted  can  be
reabsorbed by 62Sm152  to give 62Sm*152* . Hence, the name Resonant Scattering. Obviously
for this  to happen we must  have that the photon energy  in the lab frame,  where the
62Sm152  absorber is located, should be equal to the quantum transition energy which in this
case is   961 KeV.  This can only happen of the recoil  effect  described in  (1) can be
cancelled by the Doppler effect described in (2). Since the 62Sm152  mass is known and the
photon energy is 961 KeV one can calculate that the recoil energy going to the  62Sm152 

4 F.R. Metzger, Phys. Rev.  101, p286, Jan. 1956.
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nucleus which is just  3.2 eV.  However small this is , it is much larger than the natural
width of the transition which is only 0.023 eV. 

Hence, the photon recoil energy alone is enough to shift the photon energy such that no
resonant scattering occurs. However, if the preceding radiation has enough energy, it can
'correct' this by transferring some of the neutrino-recoil momentum of the 62Sm*152*  to the
photon  via  Doppler.  The  effect  is  maximum when  the  photon  is  emitted  at  the
direction of the  62Sm*152   motion.  The reader now should see another reason that this
particular  decay chain was selected:  The  840 KeV  neutrino energy from the electron
capture is comparable  to the  961 KeV  photon energy. This is  typical and a required
condition  for  all  decay  chains  which  exhibit  resonant  scattering.  Namely  that  the
preceding radiation should have enough energy to be able to 'kick-back' the photon into
resonance.

The  photons  exiting  the  magnet  were  directed  to  a  ring  where  they  could  undergo
resonant  scattering  if  the  conditions  above  were  satisfied.  Those  that  the  did  were
measured using a NaI crystal attached to a phototube. Observing resonant scattering in
this experiment means that the photons which were emitted at the 62Sm*152* direction have
indeed been selected. Their polarization can be inferred by the direction of the magnetic
field. Data runs were taken with the magnetic field  pointing both up and down. As seen
in  Fig.  4  they did  observe  resonant  scattering  which  indicated  that  their  experiment
selected  mostly  the  photons  whose  polarization  was  correlated  with  the  neutrino
polarization.  The  number  of  scatterings  with  the  magnetic  field  up  (N+)  and  down
(N-)were measured and compared. If the weak interaction produced electron neutrinos of
left and right handed spices in equal numbers, the difference between the up and down
scatters should have been zero. Instead they measured a non zero result. They observed
more scatters when the magnetic field was pointing upwards:

                                              

N+−N -

1
2

( N ++N -)
= 0.017±0.003

The magnet had a length of about 3 mean free paths, from which using the Compton
scattering  cross  section  they  could  conclude  that 68±14 % of  the  photons  were
polarized and that their helicity was negative. They used this result to conclude that the
electron neutrino helicity is also negative.
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Figure  4:  Shown at the left is the apparatus of Goldhaber, Grodzins and Sunyar. The Europium source
shown at the top in the analyzing magnet. The gamma-rays from the decay of the exited Sm* are scattered
by the Samarium oxide ring provided that they are emitted at the direction of motion of the Sm* atom. The
photons are detected by a NaI crystal using an RCA phototube. The photon spectrum that this experiment
observed is shown at the right and this gives the proof that the experiment detected photons moving at the
direction of the Sm* atom. The observation of this spectrum along with information on the direction of the
magnetic field gave proof that the neutrino has negative helicity.

Figure  5: Compton  scattering  by  polarized  atomic  electrons.  The  case  where  the  photon  cannot  be
absorbed is shown at the left and the case where the photon can be absorbed by flipping the spin is shown
to the right.
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Right-handed Neutrinos and Neutrino Mass

To  this  day  no  one  has  ever  observed  right-handed  neutrinos  (or  left-handed
antineutrinos). This could mean either that they don't exist at all or that they do exist but
they are very heavy to be observed in current experiments or that they don't couple via the
weak interaction. Introducing a hypothetical heavy right-handed neutrino would require a
theoretical  extension  of  the  Standard  Model  since  introducing neutrino  mass  using  a
simple Dirac mass term5 like we do for the other massive leptons and quarks

                                         m Ψ̄ Ψ = m Ψ̄ LΨ R+m Ψ̄ R Ψ L                                  (9.11)

requires  that  the  left-handed and right-handed particles  have the  same mass  and this
contradicts the fact the the left-handed partner is very light.  Hence, the hypothesis of a
heavy right-handed neutrino and a light left-handed neutrino requires the introduction of a
new mass  term which  is  different  than  the  usual  Dirac mass  term as  well  as  a  new
mechanism which results to this mass difference. However, if one wish to stick to the
Dirac  mass  term as  shown in  (9.11)  then  the  result  would  be  that  the  right-handed
neutrino has the same mass as the left-handed neutrino. In this case, the Standard Model
symmetries dictate that the neutrino would not couple via the week interaction so it would
be a sterile neutrino which would couple only via its mass to the gravitational field and
threfore remains unobserved.

Within the context of the Standard Model, the fact that the observed neutrinos come only
as left handed particles (and the anti-neutrinos as right-handed particles) is directly related
to  the  Vector-minus-Axial-vector  (V-A)  nature  of  the  weak  current,  whose  direct
consequence is that the weak interaction violates parity6:

       J WEAK−CC
μ

= Ψ̄ ( l -
)γμ

(1−γ5)Ψ (ν l) , J WEAK−NC
μ

= Ψ̄ (ν l)γμ
(1−γ5)Ψ (ν l)

Another way of seeing this is to notice that parity transforms left-handed particle spinors
to a right-handed particle spinors. Hence, if an interaction is invariant under parity we
should have in nature equal numbers of left-handed and right-handed particles. This is
exactly what is observed for photons. The electromagnetic interaction is invariant under
parity and this implies that we should have in nature equal numbers of left-handed and
right-handed photons. It is well known that photons are transverse plane waves which
means that we do indeed  have equal numbers of left handed and right handed photons.
On the contrary the fact that we don't have equal numbers of right-handed and left-handed
neutrinos implies that parity is violated by the interaction which produces them, the weak
interaction. One can say that the fact that we don't seem to have right-handed neutrinos at
all implies that parity is violated maximally in the weak interaction. 

5 The Dirac mass term will be discussed in Lecture 12.
6 It is easy to show that the (1−γ5) term violates parity.
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