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Energy Loss of Charged Particles Traversing a Medium

In the previous  lecture,  when we considered the decay of  charged pions  in  emulsion
material, we saw that the energy loss of charged particles traversing a medium could be
used to identify1 particles and measure their properties. For example in the case of the
pion decaying into a muon and a neutrino, if it is known how much energy is lost by the
muon per unit length in emulsion, then one can deduce from this the kinetic energy of the
muon. This can be done by measuring the muon path length from the instance that the
muon was created up to the point where it stops and decays and multiply this by the
energy loss per centimeter. Hence, understanding the different mechanisms under which
charged particles lose energy as they traverse matter is very important in experimental
particle physics.

Different particles lose energy in different ways depending if they have large or small
mass,  or if  they interact electromagnetically,  weakly or strongly with matter which of
course can be used to identify them. In this lecture we will discuss about the energy loss
suffered by electrons and muons as they traverse a material. 

Energy loss suffered by charged particles due to ionization

This paragraph addresses the energy loss suffered by charged particles via the process of
ionization of the atoms of the material that they traverse. All charged particles lose energy
this way although this is not always the dominant process of energy loss. For example the
lightest  of  them,  the  electrons  and positrons  which  have a  mass  of  0.511 MeV, lose
energy predominately via Bremstrahlung at high energies whilst at kinetic energies of a
few tens of MeVs they lose energy via ionization. Ionization is the process where charged
particles  interact  electromagnetically  with  the  atomic  electrons  in  the  medium  and
transfer energy to them via a process which results in ionizing the atoms of the medium.
Calculating the energy loss using quantum theory is a fairly complicated process which is
beyond  the  scope  of  this  course.  The  correct  result  form  the  quantum  mechanics
calculation  is  given and discussed at  the end.  Here we will  compute  the energy loss
classically.  However,  the  classical  calculation,  whose  result  is  not  as  accurate  as  the
quantum result, does demonstrate the origin of the main features and dependencies of the
quantum result.
We will start by solving the problem of calculating the energy transfer from an ionizing
particle, which moves with velocity υ⃗ a distance dx ' , to a single stationary electron in a
medium. Note that we actually compute the energy gained by the stationary electron in
the medium due  to the movement of the ionizing particle by dx '  during which time the
ionizing particle is assumed to have a constant velocity υ⃗ .  

1 It turns out that from the other properties of the track, as we will see later, they could also tell that this was 
indeed a muon and not another particle.
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This is a valid assumption because at the end we are only interested to compute dE /dx '
(energy transfer per cm where dx ' is infinitecimal) and during the time dt=dx ' /υ  the
velocity of the particle can be assumed to be constant. Eventually we will integrate over
all the electrons in the medium. 

               

Figure 1: A heavy charged particle of mass M, charge ze interacts and transfers energy to a stationary
electron located at distance b (impact parameter) from its path.

Consider a charged particle with charge ze , energy E LAB and mass M moving along the
z-axis at a distance b from a stationary electron e as shown in Fig. 1. The force on the
stationary electron due to the ionizing particle in spherical and cylindrical coordinates is
given by: 

                                         F⃗ =
ze2

4 π ε0

1

∣⃗r ( t)∣2
r̂ = F ρ ρ̂+F z ẑ

Shown in Fig. 1  are the forces on the stationary electron at two different time instances.
Due to the symmetry of the problem the effects  due to the z-component  of the force
cancel out and one only needs to compute the radial force.

            F ρ =
ze2

4 π ε0

1

∣⃗r ( t)∣2
sinθ =

ze2

4π ε0

b

∣⃗r (t )∣3
=

ze2

4π ε0

b

(b2
+(υt )2

)
3 /2

From the radial force one can calculate the radial acceleration as:

                                    a ρ =
ze2

4π ε0

1
me

b

(b2
+(υt )2)3 /2
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Finally the radial velocity can be calculated by integrating over time: 

                     V ρ =
ze2

4π ε0

1
me
∫
−∞

+∞ b

(b2
+(υt )2)3 /2

dt =
ze2

4π ε0

1
m e

2
υb

The energy gained by the stationary electron can be calculated using the classical formula 
for the kinetic energy:

                                  Δ E =
1
2

m e V ρ
2
=

z2 e4

8 π2 ε0
2

1
m e

1

υ2 b2

The  integration  over  all  the  electrons  in  the  medium  is  done  by  considering  the
elementary volume shown in Fig. 2. The ionizing particle is at the centre at distance  b
from a given electron in the medium. The elementary volume is given by:

                                             dV = 2 π b×db×dx '

and  the  number  of  electrons  per  unit  volume  is  given  by:  Z×
N A

A
×ρ  where

Z , N A , A , ρ are the atomic number, the Avogadro number, the mass number and the
density of the medium. Hence the number of  electrons is given by:

                     dn = 2 π b db dx ' × (Z×
N A

A
×ρ)

                     
dE
dx '

=
z2 e4

8π2 ε0
2

1
me

1
υ2 × 2 π × Z×

N A

A
× ρ × ∫

bmin

bmax

bdb
b2 ⇒

                     
dE
dx

=
z2 e4

4π ε0
2

1
m e

1

υ2(Z
N A

A ) [ ln(b)]bmin

bmax

where x=ρ x' and is given in units of g / cm2 . 

To compute the minimum and the maximum impact parameters we use the energy 
formula:

       E =
1
2

m e V ρ
2
=

z2 e4

8π2 ε0
2

1
m e

1

υ2b2
⇒ bmax ; min =

z e2

2π ε0 υ
1

√2me

1

√E min;max
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Figure 2: Elementary volume over which we integrate to sum the energy loss due to all electrons in the 
medium.

Hence,

                                
dE
dx

=
z2 e4

8π ε0
2

1
m e

1

υ2(Z
N A

A ) ln(
E max

Emin

)

However, the maximum energy transferred to the electron is given by:

                                
Emax =

2 me β2 γ 2

1+
2m e E LAB

M 2 +
me

2

M 2

 

(the proof of this formula is left as a homework).  Hence, the energy loss formula is given
by:

                              
dE
dx

=
z2 e4

8 π ε0
2

1
m e

1

υ2(Z
N A

A ) ln(
2me β2

E min(1−β2
)
)

The minimum energy Emin is taken to be the minimum energy required to ionize an atom
of the medium, the ionization potential,  and of course it depends upon the type of the
medium. 

Having shown the basic features of the energy loss formula we are now ready to present
the exact quantum result which is the well known Bethe-Bloch formula.
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The Bethe-Bloch formula:

Figure  3:  Energy loss of muons in copper. The y-axis is given in units of MeV cm 2  /g so that one can
multiply by the density of the given material and compute the energy loss in MeV/cm. The energy loss
depends on the relativistic quantity   which can be converted to momentum, as it is done here for muons,
if one has identified the particle and knows its mass.

The exact quantum mechanical result for the energy loss suffered by massive, charged
penetrating particles is given by the Bethe-Bloch equation:
                     

      −
dE
dx

= K z2 Z
A

1

β2 [ ln
2me c2 β 2γ 2

I
−β2

−
δ
2] = K z 2 Z

A
1

β2 [ ln
T max

I
−β2

−
δ
2 ]

where: 

1)   K
A

=
4π N A r e

2 me c2

A
= 0.307 MeV g−1 cm2  if  A = 1 g mol−1 and  N A , r e , m e

are the Avogadro number, the classical radius of the electron and the electron mass.
The variable x is measured in g/cm2 for reasons that will become apparent later.

2) T max  is the maximum energy which can be imparted to a free electron in a single
collision.
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3)  β , γ  are the well known relativistic quantities, z is the charge of the incident particle
and Z is the atomic number of the medium.

4) I is the ionisation potential usually taken to be I = 10×Z eV  .
5) Finally δ is the density correction term that will be discussed later.

Fig. 3 shows a plot of the Bethe-Bloch formula computed for positive muons (mass =
105.7 MeV) penetrating copper.  By inspecting the Bethe-Block formula and Fig. 1 one
can see that:

a)  The ionization energy loss does not depend upon the mass of the ionizing particle.

b)  There is only a weak dependence on the medium because
Z
A

≃ 0.5 for most 

materials. This can also be seen in Fig. 4 where the energy loss has been plotted  for 
various types of  materials and ionizing particles.

c)  The energy loss depends only on β and one needs the mass of the particle to convert it
to momentum.

The Bethe-Block equation dictates that the energy loss increases as ∼β−2 as the particle
speed decreases. This effect is also shown in Fig. 3. This means that slow particles will
be more ionizing than fast particles.  As the particle speed increases the energy loss
reaches a minimum of about 1.5 – 2.0 MeV cm2/g and remains at this level for almost the
entire range of muon momenta one would observe in a high energy physics experiment.
Hence, the concept of minimum ionizing particle, which is used in high energy physics
to refer to particles whose speed is in this regime and suffer similar energy losses (1.5 –
2.0  MeV  cm2/g).  After  that  is  starts  rising  following  the  so  called  relativistic  rise.
However radiative effects are also important in this region. 

The relativistic rise comes from the fact that the electric field of the ionizing particle in
the lab frame is proportional to the relativistic gamma (coming from Lorenz transforming
the electric field from the particle to the lab frame). Hence, the faster the particle is, the
stronger the field becomes and therefore the particle can ionize atoms at larger distances
and lose more energy. The rise of the energy loss is logarithmic as can be seen by:

                           ln
2me c2 β2 γ2

I
∼ ln

2me c2

I
+ln ( β2 γ2) ∼ ln(P /M )

Eventually the medium polarizes and cancels this effect. This prevents the energy loss
from rising perpetually and eventually flattens at very high particle speeds. This is the
origin of the density correction term, δ  , in the Bethe-Bloch equation.
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Figure 4: Energy loss in various types of material computed calculated for muons, pions and protons.

From the classical proof of the ionization energy loss shown earlier the reader  may have
realized the reasons for expressing the energy loss in MeV cm2/g. As we said the energy
loss, expressed in units  of MeV cm2/g,  depends very weakly on the type of medium.
However, to convert it to MeV/cm one has to take in to account how dense the material is
because the Bethe-Bloch formula is given normalized to unit density. In other words a
factor of density is missing which accounts for the number of electrons per unit volume
for a given material. Hence in practice, although Fig. 3 refers to muons in copper, one can
use it to compute energy loss in any other material by multiplying with the density of the
material.  Here is  how one would use Fig.  3  or  the Bethe-Bloch formula  to  calculate
ionization energy loss.

Example 1: Consider a beam of pions each with kinetic energy equal to 80 MeV going
through a carbon block. Compute  the energy loss  per cm as well  as the thickness  of
carbon  required  to  stop  them.  The  carbon  density  is  2.265  g/cm3.  Assume  that  the
dominant energy loss mechanism is via ionization and ignore possible effects related to
the strong interaction.
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Solution:

          KE = E−M ⇒ 80 MeV = E−140 MeV ⇒ E = 220 MeV ⇒

                    p = √E2
−M 2

= 170 MeV /c ⇒ β γ = p/ M = 1.21

One can now use the Bethe-Block formula (or Fig. 3 which is easier) to show that:

                                       d E
d x '

( β γ=1.21) ≈ 2 MeV
cm2

g

Hence,

                          
d E
d x

= 2.265
g

cm3
× 2 MeV

cm 2

g
= 4.5

MeV
cm

and with  80 MeV /4.5 MeV /cm ≃18 cm  of carbon one can stop the beam pions from
going through. As we will see next this is only approximately true due to the fact the the
energy loss follows the Landau distribution.
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The Landau Distribution

The ionisation energy loss is in principle a stochastic process and one should note that the
Bethe-Bloch equation describes only the average energy loss. If one were to shoot single
charged particles  over  and over  on  a  target  he/she  will  observe  that  the  energy loss
follows the Landau distribution  shown in Fig. 5,  where the most probable value is far
lower than the average predicted by the Bethe Bloch equation.

                 

Figure 5: The Landau distribution which describes the energy loss for a single particle as a function of the
energy loss normalized to the thickness of the material (in this case silicone). Δ represents the energy loss
and  x is the thickness of the material.
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Charged Particle Identification using Energy Loss

The ionisation  energy loss  is  often  used  to  identify charged particles.  If  the  particle
momentum  can  be  measured  accurately  then  by  binning  the  data  in  bins  of  fixed
momentum we have that the ionization energy loss depends on the particle mass. Hence,
by measuring  dE /dx and the  momentum we can identify particles  relatively well  as
shown in Fig. 6.

Figure 6: At fixed momentum the energy loss of charged particles depends upon their mass and it can be
used to identify particles. The first two bands at low momentum correspond to muons and pions and the
other two are for kaons and protons. A fifth band is barely seen and corresponds to D mesons which
heavier than then proton. The band that is flat in momentum is the electron band.
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Multiple Coulomb Scattering

Charged particles of moderate mass traversing a medium, apart from losing energy to the
electrons in the medium, interact also with the nuclei in the medium. They cannot transfer
energy to them because the nuclei are much heavier than the electrons and the energy
transfer, as we have seen, is inversely proportional to the target mass. However, they do
‘feel’ the Coulomb field of the nuclei and because the nuclei are a lot heavier than them,
they scatter transversely in the field of the nuclei. The elementary process for one such a
scatter is well understood since more than a hundred years ago and it is described by the
Rutherford  formula.  However,  one  has  to  take  in  to  account  that  a  charged  particle
moving in a medium will undergo a large number of such scatters in a process which is
stochastic in nature and it is called Multiple Coulomb Scattering.

From the experimental physics point of view one needs to be able to compute how much
a charged particle beam is going to diffuse when it goes through a medium. Clearly, due
to this effect, one expects that even a pencil beam of infinitely small cross section passing
through a medium of some thickness, will diffuse. At the exit point its spacial distribution
will be Gaussian due to the stochastic nature of the scatters but it will have non-Gaussian
tails due to the Rutherford formula as shown in Fig. 7.

                       

Figure 7: A particle beam passing a material of length L undergoes multiple Coulomb scattering and at
the exit point the particles of the beam follow a Gaussian distribution with non-Gaussian tails.

It turns out that he RMS of the angular distribution in space is given by the formula:

  (θ RMS)
2
=( z E s

p β )
2

×
dL
X 0

 

where z is the charged particle charge number, E s = 21 MeV , p , β are the momentum
and the relativistic velocity of the particle, dL is the elementary length of the material that
the particle went through and caused the deflection and X 0 is the radiation length in cm
which is a constant that depends upon the material and will be discussed later. 
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If one is interested to compute the deflection on the trajectory plane as shown in Fig. 7 an
extra factor of  2 need to be introduced:

   (θ RMS)PLANE
2 =(

z E s

p β √ 2
)

2

×
dL
X 0

Energy Loss by Electrons 

The dominant process that the electrons lose energy when they pass through a material
and have kinetic energy above some tens of MeV is shown in Fig. 8. and it  is called
Bremstrahlung radiation.  The key idea to  this  diagram is  that  an electron in  absolute
vacuum cannot just radiate a photon. To do this it must exchange a soft photon with a
heavier nucleus in its neighborhood2.   

                                        

Figure 8: The Bremstrahlung  process.

Lets  try  to  guess  the  cross  section  of  this  process:  From  the  strength  of  the
electromagnetic interaction and basic Feynman digram rules we expect that amplitude for
this process will be:

  A ∼ Z e3
∼ Z αQED

3/2

and the cross section will be:

   σ ∼ ∣A∣
2
∼ Z 2 e6

∼ Z 2 αQED
3

2 To show this go to the rest frame of the incident electron and compute the kinematics of  e→e.
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However, this has the wrong units since it is obviously a number. The only other variable
involved in this problem is the electron mass and to get the correct units for cross section
(length square) one needs to divide by the electron mass square which has units of one
over length.

                                            σ ∼ ∣A∣
2
∼

Z 2 e6

m e
2 ∼

Z 2 αQED
3

me
2

Of course this is units of GeV−2 which in our system of units is the unit of length square.
If one wants to convert this to square meters, he must multiply or divide by factors of
ℏ , c to get the correct units. It turns out that the formula then becomes:

                                            σ ∼
Z 2 αQED

3

me
2 c4 × (ℏ c)2

Now it should be obvious why the electrons behave radically different than the muons:
The radiation rate in inversely proportional to the square of the mass. The muons radiate
also but (me /mμ)

2
∼ (1/200)2  less than electrons. Hence, in the energy range of todays

experiments, the effect is negligible and the muons can only lose energy via the Bethe-
Bloch process. In the case of the much lighter electrons the dominant process is  indeed
Bremstrahlung,  which  sometimes  is  called  Bethe-Heitler  process,  except  for  energies
below a the critical energy that we will be discussing shortly. 

Lets proceed now to compute the dE /dx for electrons due to the Bremstrahlung  process:

                                          
d σ
d Ε

∼
Z 2 αQED

3

m e
2 c4 ×

(ℏ c)2

Ε
⇒

where Ε is the energy transferred.  The total energy transferred over an interval dx is 
then computed as follows.

      −
d E
d x

∼ n ∫
Ε min

Εmax

Ε ×
Z2 αQED

3

me
2 c4 ×

(ℏ c)2

Ε
d Ε = n

Z 2 αQED
3

me
2 c4 (ℏ c)2(Εmax−Εmin)

where n is the number of nuclei per cubic centimeter and Εmax , Εmin are the maximum
and the minimum energy transfer. The later can be taken to be almost zero. An extra
factor of  4 ln 183/Z 1/3

  is needed to account for integrating over the range of possible
impact parameters and the result then reads:
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d E
d x

= −4n
Z 2 αQED

3

m e
2 c4 (ℏ c)2 ln(

183

Z1 /3 )E (E=Εmax )

where the relationship

 
1
X 0

= 4 n
Z 2 αQED

3

m e
2 c4 (ℏ c)2ln (

183

Z 1/3 )

defines  the  radiation length.  It  is  worth  noting  here  the  radiation  length  of  a  given
material is inversly proportional to the square of the atomic number of the material. This
means that if the goal is to absorb rapidly an electromagnetic cascade one needs to use a
high-Z material such as iron, tungsten, lead, uranium or another such material.

In conclusion,

dE
dx

= −
E
X 0

⇒ E x = E0 e
−

x
X 0

In practical terms this relationship dictates that after one radiation length the electron has
1/e of its energy left. As shown here the radiation length has units of  length. However,
often it is given in units of g/cm2  and one has to divide by the density of the material to
convert it to centimeters3.
 
One would then ask when does the electron lose energy via the Bremstrahlung process
and when via the Bethe-Bloch process. As one may guess the faster the electron is the
more likely is to radiate photons as it slows down while entering a space filled in with
material.  Eventually  its  energy will  become  significantly lower.  At  low energies  the
ionization  (Bethe-Bloch) process dominates.  This  is  shown in Fig.  9 which describes
electron and proton energy loss in copper. For electrons below 10 MeV the Bethe-Bloch
process dominates and above that the Bremstrahlung process, which rises linearly with
energy, becomes dominant.

3 https://pdg.lbl.gov/2022/html/computer_read.html 
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Figure 9: Contributions to the energy loss by electrons as a function of energy in MeV.

The  energy  where  the  Bethe-Bloch  contribution  is  equal  to  the  Bremstrahlung
contribution is called  critical energy and depends inversely proportional to the atomic
number of the material involved. The critical energy is given by:

                                                E c ≃
560 MeV

Z

Obviously this is an approximate formula and in practice it is different for gases, liquids
and solids. One finds in the literature also the following different formulas for solids-
liquids and gasses. 

                      E cSolid/ Liquid ≃
610 MeV
Z1.24

         ;      E cGas ≃
710 MeV
Z1.24

These are clearly approximations derived from data.

Lecturer: Prof. C. Foudas, Physics Department, F3.303, Costas.Fountas@cern.ch 15



Lecture 4

Particle Physics, 4th year undergraduate, University of Ioannina 17/12/22 

Electromagnetic Cascades (Showers)

Lets try to get an idea of what happens when an electron beam hits a target. From what
we have learned so far the electron will emit a Bremstrahlung photon again and again via
a process that the electron loses energy until  its  kinetic energy decreases down to the
critical energy where the radiation process becomes negligible and the energy loss due to
ionization dominates.  The photons from the electron if they are energetic enough will
create electron-positron pairs which in turn will radiate again. If they are not energetic
enough they will  lose energy via the Compton or the Photoelectric effects. The entire
collection of these photons, electrons and positrons is called  electromagnetic shower or
electromagnetic cascade.  

So  lets  create  a  simple  model  to  describe  this  process.  Lets  assume  that  for  every
radiation length that the particles propagate in the material an electron-positron pair is
created if the parent particle is a photon or an electron-photon pair is created if the parent
particle is an electron. The process is shown in Fig. 10 and starts with a photon but it
could have equally well have started with an electron emitting a photon. The student who
thinks that this model is simplistic should look to Fig. 11 and convince herself/himself
that these things actually happen in the way we have hypothesized. Clearly, according to
our model,  the number of particles created rises as:

 N  t  = 2
t

where t is the number of radiation lengths in the material. The process goes on until all
the particles  have reached the critical  energy. From this point  on the electrons  in the
shower lose energy by ionizing the material around them and get absorbed. Photons keep
pair-creating until their energy is below 1 MeV after which point they lose energy only
via the Compton and the Photoelectric effects. Obviously this is an approximation but a
good one.  

Next  we can calculate at  which point we will  have reached the maximum number of
particles. The average energy of each particle at a depth of t-radiation lengths is:

 E  t  =
E0

2 t

The maximum number of particles is reached when:

  E c =
E0

2
t
max

⇒ ln(
E c

E0

) = −ln2⋅tmax ⇒ tmax =
1

ln2
ln(

E0

E c

)
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Figure 10:  A model of the electromagnetic cascade where one assumes that one electron-positron or an
electron-photon pair will be crated for every radiation length in the material in a process that subdivides
the energy of the original particle  until the particles reach the critical energy for the specific material.

 

Figure 11: An actual picture of an electromagnetic cascade in a cloud chamber instrumented with metal
plates to force the electron to lose energy.
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Another approximation of this formula is given by:

                           tmax = ln
E0

E c

0.5 X 0  which is valid for photons.

and 

                           tmax = ln
E0

E c

−0.5 X 0  which is valid for electrons.

As seen here electromagnetic showers originating from electrons reach their maximum
about one radiation length deeper than those originating from electrons. This is expected
because the photons need about a radiation length to produce an electron positron pair.
Note that the depth at the shower maximum is given in units of radiation lengths. 

The  reader  should  compare  these  formulas  with  the  data  from  Fig.12  to  convince
himself/herself  that  they  work.  All  these  formulas  indicate  that  that  the
electromagnetic shower depth grows logarithmically with the shower energy. This is
very fortunate because it means that the size of the detectors that measure energy also
grows logarithicaly with energy.

Next we can try to derive roughly the number of particles created.

 N TOTAL = ∑
0

tmax

2 t
= 2

t max1
−1 ≃ 2

t max1
= 2⋅2

t max

and substituting for tmax we have:

                                                 N TOTAL ≃ 2
E0

E c

Hence, the number of particles in a shower grows linearly with energy. This fact has
been exploited for making measurements of the shower energy. Alternatively dividing the
incident electron or photon energy by the critical energy gives an estimate of the number
of particles created. However, if one wants to contain the electromagnetic shower will
need  to  place  material  of  depth  larger  than tmax .  As  seen  from Fig.  12,  for  a  95%
containment one would have to add approximatelly 10 radiation lengths of material to
allow all the particles to lose their energy via ionization and get absorbed.  The equation
which gives the 95% containment of an electromagnetic shower is:
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                                t95% ≃ tmax0.08 Z9.6  (in units of radiation lengths)

Finally the transverse size of an electromagnetic shower is characterized by the Moliere
radius which is given by: 

                                RM =
21 MeV

E c

X 0     or

 RM = 7
A
Z

g cm−2  (need to divide by density)

For 95% transverse containment one would use

                                R95 % = 14
A
Z

g cm−2

Figure 12: The normalized differential distribution of energy deposition in iron from 30 GeV Electrons.
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Calorimeters: These are instruments  that  measure the energy of an electromagnetic
shower by essentially measuring the total number of particles in the shower. Given that
the number of particles produced depends linearly on the energy deposited one needs only
a few calibration measurements using test beams of well known energy to calibrate a
calorimeter. There are uniform and sampling calorimeters. 

Uniform  calorimeters  are  instruments  made  typically  of  active  materials  with  short
radiation length which absorb the entire electromagnetic shower and convert the cascade
energy deposited to light which can be measured using light sensitive devices such as
photomultipliers.  Uniform calorimeters  are  active  throughout  their  volume.  As  stated
before,  ultimately all  shower  particles,  as  they lose  energy,  reach the  critical  energy,

E c ,  where they lose energy via ionization at a fixed rate described by (dE/ dx) .
The amount of energy released in the form of light is equal to the number of particles
produced multiplied by the minimum ionizing energy deposition of each particle. Hence,
the amount of light produced and the number of particles are proportional to the energy
deposited on the calorimeter. 

Example: Consider a uniform calorimeter with E c = 10 MeV . Estimate the number
of particles produced in this calorimeter when a photon of energy E γ = 20GeV enters
the calorimeter.

Solution:  Based on the previous discussion the number of particles is given by

                                   N TOT ∼
E γ

E c

=
20 GeV
10 MeV

= 2000

A sampling calorimeter does not 'see' all the energy of the electromagnetic shower but
only a fraction of it. It is typically constructed by plates of absorber of thickness, d, with
layers  of  active  material  in  placed in  between.  Sampling  calorimeters  are  cheaper  to
construct but they can never compete in energy resolution with the uniform calorimeters
simply  because  a  sampling  calorimeter  does  not  measure  the  entire  electromagnetic
cascade. An example of a sampling calorimeter is shown in Fig. 13. 

The energy resolution of a calorimeter is given by

                                              
ΔE
E

= A ⊗
B

√E
⊗

C
E

where the symbol ⊗ indicates addition in quadrature. 
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The constant term, A, is due to uncertainties in the uniformity and inter-calibration of the
the  various  calorimeter  elements.  The B /E term  is  called  the  stochastic  term  and
originates  from fluctuations of the particles in electromagnetic shower. Since the incident
energy is  proportional  to the number of particles  produced the stochastic  term of the
resolution can be estimated using Poisson statistics:

Δ E
E

∼
√ΝΤΟΤ

NTOT

=
1

√N TOT

∼
1

√E

For example the intrinsic resolution of the calorimeter of the previous example for photon
energy equal to 20 GeV would be 

                                             
Δ E
E

∼
1
√E

=
1

√2000
≈ 2%

The term C /E has  its  origin  in  noise.  The constant,  stochastic  and  noise  uncertainty
contributions are independent errors and to compute the total error one will have to add
them in quadrature. 

     
Figure 13: A sampling calorimeter with absorber plates of thickness, d, shown in gray and active material 
placed in between them.
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The stochastic term of the calorimeter resolution can be computed roughly from

                                               
Δ E
E

∼
√F Fano√W

√E

where F Fano is  a  factor  which  accounts  for  the  fact  that  the  overall  energy does  not
fluctuate (Fano factor) since the energy of the beam that impinges in the calorimeter is
fixed  and W ~ E c is  the  energy  typical  to  a  single  interaction.  Note  that E /W is
proportional to the total number of particles created. The assumption here is that at the
shower maximum all particles have approximately and energy equal to E c which the
subsequetnly lose via ionization.

The a more accurate expression for the stochastic term of a sampling calorimeter is given 
by

                                               E
E

=  E c d

F f E0 X 0

where E0, E c , X 0 are the incident particle energy, the critical energy of the absorber, and
the radiation length of the absorber in cm. The quantity f  is the sampling fraction of the
calorimeter  (the  percentage  of  energy  deposited  on  the  active  material)  and F is  a
correction factor which takes in to account that some particle tracks are lost due to the
energy cutoff of the calorimeter (most calorimeters are insensitive to particles of energy
below  some  MeV).  As  the  reader  realizes  the  quantity E 0/ E c d / X 0 is  simply  the
number of particles of the shower.                      

As active material  in  uniform calorimeters  one wants to use a materail  that  produces
enough light from the electromagnetic cascade and also has a short radiation length so it
absorbs the cascade in a way that the calorimeter size remains reasonable. For example
the  CMS  collaboration  at  CERN  has  used  crystals  of  PbWO4  in  the  design  of  its
electromagnetic calorimeter.

In sampling calorimeters liquid or plastic scintillator, liquid Argon or silicon have been
used as active materials.

In general the performace if the calorimeter is determined by the radiation lenth X 0 ,
the critical  energy E c ,  and the attenuation  length λatt  which  determines  how the
shower  decreases  after  it  has  reached its  maximum.  In addition  to  these  for  samling
calorimeters the sampling fraction is key to their performance.
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The Cloud Chamber 

A number of important measurements in the early years of particle physics were done
using an instrument called the Cloud Chamber. By today’s standards the Cloud Chamber
is a very crude instrument and can easily be constructed in an undergraduate lab with a
budget of the order of 50-100 Euro. However, the discovery of the positron, the muon, the
strange particles and our early knowledge on the nature of cosmic rays have their origins
to this device. The cloud chamber was developed by C.T.R. Wilson (Cambridge) in 1896
who got the Nobel price for his invention in 1927.

  

Figure 14: A picture of the expansion cloud chamber (Left). The cloud chamber is at the top left of the 
device. The glass vacuum chamber is shown to the right. The black metal cylinder contains a piston which 
was driven by the vacuum using valves. The detailed design of the instrument is shown in the picture at the 
center. A picture of the inventor of this device, C.T.R. Wilson, is shown to the right.

A typical example of an early Cloud Chamber is shown in Fig 14. This is an expansion
type Cloud Chamber and works as follows: The chamber at the top left is filled with a 
vapor which is usually alcohol or a mixture of alcohol and water. The vacuum chamber to
the right is controlled by a valve and is used to ‘suck-down’ a piston. The resulting 
expansion  of  the  vapor  in  the  chamber  cools  it  and  thus  creates  a  supersaturated
atmosphere. This means that the vapor temperature is lower than the normal temperature
that the vapor exists and will immediately condensate under certain conditions. However,
supersaturated vapor will not condensate unless if it is seeded. When a charged particle
goes  through  the  chamber  it  ionizes  the  medium.  The  positive  ions  provide  such  a
condensation  seed  and  condensation  starts  along  the  charged  particle  path.  Hence,
charged particle paths can be observed by the small droplets they leave behind. In the
early days of the Cloud Chamber work the chamber would be illuminated from one side
and pictures would be made from the other side.  If an interaction occurred when the
picture was made, it was recorded. As the reader may guess this not a very efficient way
of  doing  this  and  a  method  to  trigger the  camera  to  record  pictures  only when  an
interaction had occurred was later introduced by P.M.S. Blackett who also got a Nobel
price for his contributions to research using Cloud Chambers.  

Lecturer: Prof. C. Foudas, Physics Department, F3.303, Costas.Fountas@cern.ch 23



Lecture 4

Particle Physics, 4th year undergraduate, University of Ioannina 17/12/22 

Often the Cloud Chamber was put in a magnetic field which was used to bend the particle
trajectories and measure their momentum using the formula:

                                                  Rm =
pGeV 

0.3 BTesla 

where  R  is the radius in meters  p the momentum in GeV and  B the magnetic field in
Tesla. 

It  was  also  a  usual  practice  to  insert  a  metal  sheet  in  to  the  chamber.  This  forced
electrons or positrons traversing the sheet to lose a substantial amount of energy over a
short distance. As one expects intuitively the energy loss per centimeter in a metal must
be far larger than that in a gas (the radiation length decreases as ∼ Z−2 ). This meant
that the electrons or positrons exiting the metal would bend more in the magnetic field
than before entering. Hence, one could tell their direction from which they deduced the
sign of their charge. In addition the energy loss of different particles as they traversed the
metal sheet could be measured. These measurements were used to identify the particles.

Figures 15 and 16 show typical  pictures taken by Cloud Chambers.  Figure 15 shows
several electrons and positrons. The positrons and electrons bend in opposite directions in
the magnetic field of the chamber due to their opposite charges. In addition to the 6 high
momentum tracks one can clearly see 2 tracks which curl more in the magnetic field of
the chamber because they have considerably less momentum. These two tracks have been
identified as those of an electron and a positron which were pair-produced by a photon
radiated of one of the primary electrons.  Hence,  their  momentum is smaller  than the
primary electron. 

Figure  16  shows a  Cloud  Chamber  with  a  piece  of  an  absorber  sheet  placed  in  the
chamber. Particles colliding with it produce showers of new particles which can be seen
at the other side of the absorber sheet. One of the particles produced is a neutral kaon
decaying to two charged pions. This was the first evidence of  a new category of particles,
which were called strange particles, because although they could be produced copiously,
which was an indication of being produced by the strong interaction, the would decay
relativly slowly which was an idication that they decay via the weak interaction.
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Figure 15: Two pictures of a Cloud Chamber event. The picture to the left is taken from the top side of the
chamber and shows 3 electrons (left side) and 3 positrons (right side). The picture to the left shows the
same event shown from the bottom of the chamber. The slow particles which curl more in the magnetic
field are the result of a photon radiated from the electron which subsequently splits in to an electron-
positron pair. 
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   Figure 16: A famous picture from a Cloud Chamber. The metal sheet can be clearly seen in the middle of
the  chamber. Also clear is that some particles lose energy rapidly and their paths degenerate to curly
tracks where other particles don’t and follow somewhat straighter trajectories bent slightly only due to the
magnetic field. This picture is famous because at the lower right side it shows for first time the decay of a
neutral strange particle into two charged pions which was measured by Rochester and Butler in 1947.
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The Discovery of the Muon (1937)

In 1937 S.H. Neddermeyer and C.D. Anderson4 at Caltech measured the energy loss of
cosmic ray particles as they passed through an 1 cm plate of platinum placed in a Cloud
Chamber.  The  Cloud  Chamber  was  placed  in  a  uniform  magnetic  field  so  that  the
curvature of the particle trajectories could be measured before entering the platinum and
after  exiting  the  platinum.  Hence,  they  could  compute  the  energy  loss  suffered  by
particles.  Obviously what was actually measured was the particle momenta from which
one could infer the energies of the particles if he/she assumed the mass. This was not very
hard those days since they knew only for types of particles, the proton, the neutron, the
electron and the positron which had recently been discovered and would be the subject of
discussion later on in the course. What Neddermayer and Anderson found is summarized
in Figure 17.

Figure 17: The energy loss of particles plotted versus the particle initial energy (left).The histogram to the 
right shows the number of events versus the percent energy loss. The events shown at the negative side of 
the histogram are due to experimental resolution but also due to tracks which move upwards whereas they 
have been accounted as downwards going tracks.

4 S. H. Neddermeyer, C. D. Anderson, Phys. Rev. 51, p884, (1937)

Lecturer: Prof. C. Foudas, Physics Department, F3.303, Costas.Fountas@cern.ch 27



Lecture 4

Particle Physics, 4th year undergraduate, University of Ioannina 17/12/22 

Their results demonstrate the there were two categories of particles:

I. Particles that lost a significant fraction of their energy in the platinum. The energy
they lost was proportional  to  their  initial  energy in  agreement  with  the  Bethe
Heitler theory ( dE /dx = −E / X 0 ). Hence, they are concentrated close to the
straight line of Fig. 16 (left) and are also shown as the shaded histogram in Fig.16
(right)  concentrated between 0.8 and 1.0 (significant part  of their  energy lost).
Based on these, these particles were identified to be electrons and positrons.

II. Penetrating particles which lose a small fraction of their energy in platinum. These
are  shown  clearly  as  a  band  close  to  the  x-axis  in  Fig.  16  (left)  and  in  the
histogram of  Fig. 16  (right) where they are concentrated below 0.2 (energy loss
less than 20% of the initial energy).

The penetrating particles of category II were new and unexpected and of course the big
question was what kind of particles they were.  To figure this one out, one has to know
how do charged particles lose energy due to ionisation in the medium that they traverse.
They were not protons because the momentum accessible to this experiment was below
500 MeV/c and protons of this kinetic energy would be highly ionizing since they would
be very slow. The highest momentum track had a momentum of :  

    p = 0.3⋅B⋅R = 0.3×4.5×105 Gauss⋅cm = 135 MeV /c

Hence, if the were protons they would have had :
 

 βγ = (135 MeV )/938 MeV = 0.14

which would place them right in the low βγ region of the Bethe-Bloch formula were the
energy loss rises with decreasing particle velocity and is  approximately 10 MeV cm2

/ g .
This would have been manifested by thick tracks with the high density of droplets which
was of course not observed. A proton track at this speed would have had a track that had
25 times larger droplet density than that from an electron of the same momentum.

They were not electrons either. Electrons of momentum 135 MeV/c are fast and  have:

 βγ = (135 MeV )/0.511 MeV = 264.2

Although the  energy they would  lose via  ionization  is  small  ~ 2.0 MeV cm2/g,  they
should  have  lost a  significant  fraction  of  their  energy  via  Bremstrahlung,
dE /dx = −E / X0 and the energy loss  should have been proportional  to  their  original
energy, which according to the data shown in Fig. 17 was not the case for the category II
of the penetrating particles. 
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Hence,  Anderson  and  Neddermeyer  claimed  discovery  of  new  particles  which  were
neither  electrons  (or  positrons)  nor  protons  (they only particles  known at  the  time).
Stevenson and Street5 followed up with their experiment shortly after them investigating
the nature of these penetrating particles. 

                 

Figure  18:  The apparatus of  Stevenson and Street (left) selected particles which stopped in the cloud
chamber, C, using a trigger which fired  when Geiger counters 1,2,3 had fired and counters 4 had not
fired. Hence, it selected particles whose energy was a little larger than the energy loss suffered in the lead
block L. One of these events is shown in the picture to the right. 

Stevenson and Street  used the cloud chamber  apparatus  of  Fig.  18 (left)  placed in  a
magnetic field. The technique they used to trigger the camera of the cloud chamber had
been pioneered earlier by Blackett (who got the Nobel for this technique among other
things he did).  They used Geiger  counters  which fired when a charged particle  went
through. The signals from the Geiger counters triggered the camera of the cloud chamber
to take a picture of the cloud chamber. This way pictures were taken only when particles
went through and not at random.

Stevenson and Street designed their apparatus to select slow particles which stopped in
the cloud chamber. This way they could clearly measure well both the track momentum
(they bend a lot) as well as the track ionization ( ∼1/ β2 ) by measuring the droplet
5 J. C. Street, E. C. Stevenson, Phys. Rev. 52, p1003, (1937).
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density of the tracks. The trigger condition to record a picture were that Geiger counters
1, 2, 3 had fired but Geiger 4 had not fired ( 1⋅2⋅3⋅4 ).  This way the particle whose
picture was taken must have stopped in the chamber. However, the average kinetic energy
of cosmic ray muons is about 1 GeV. Muons of such energy would have penetrated the
cloud chamber and would have exited firing Geiger 4 because the energy loss due to
ionization in the cloud chamber is far less than 1 GeV. To slow them down a lead block
was placed between counters 2 and 3. We assume that the thickness of the lead block was
optimized to maximize the muons stoping in the chamber. 

Furhtermore this apparatus selected also muons of a given kinetic energy because the lead
block let through only particle that had kinetic energy which was larger than the energy
loss in the lead block.  However, since the particles were required to stop in the chamber
their kinetic energy as they exited the led block was very small. Hence, their initial energy
was approximately equal to the energy loss in the lead block.

Using this apparatus the observed the track shown at the right of  Fig. 17. This track had:

                     p = 0.3⋅B⋅R = 0.3×9.6×104 Gauss⋅cm = 28.8 MeV /c           (1)

and it had 6 times larger droplet density than an electron track of similar momentum. An
electron at this momentum is already relativistic:

                       βγ = (28.8 MeV /c) /0.511 MeV = 56.4 ⇒ υe ≃ c

Hence, the observed track ionized six times more than a relativistic electron which meant 
that:

                      
(
dE
dx

)
TRACK

(
dE
dx

)
relativistic−e

=

1
βTRACK

2

1
12

= 6 ⇒ ( β γ)TRACK = 0.45                   (2)

From (1) and (2) they derived that the mass of this particle was:

                           mTRACK = 28.8/0.45 MeV ≃ 65 MeV

So they had proved that the particle mass was indeed somewhere between the electron
mass and the proton mass.  These particles were what we call today muons, a heavier
version of the electron, and have a well measured mass of m μ = 105.7 MeV .
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Evidently their experimental error was of the order of 100%  although in  their paper they
claimed a 25% error.  However, they did show beyond doubt the the new particle had a
mass that was very different than either the proton,  neutron or the electron masses and
this was good enough to confirm the result of Anderson and Neddermeyer. 

At the time this was an unexpected discovery and this is why I. I. Rabi (Nobel Price,
Columbia University) asked “who ordered this ?”. The muon did not seem to serve any
purpose at the time. Even worse, physicists confused this with the pion (due to its similar
mass)  and  thought  that  the  muon  (which  they called  mesotron  at  the  time)  was  the
Yukawa particle6. This sent them to the wrong path for a decade.

Today we know that the muon belongs to a category of particles which are called leptons
and has  the  same  properties  as  the  electron  but  is  approximately two hundred times
heavier.  Leptons are spin ½ fermions  and come in three families.  Each family has  a
charged particle and its electrically neutral neutrino partner (electron/electron-neutrino,
moun/muon-netrino, tau/tau-neutrino). The mass of the charged leptons is rising with the
family. It is known today that neutrinos do have mass. However, their mass pattern is
subject to intense investigations today.

                     

Figure 19: Anderson(left) who discovered of the positron and the muon. Blackett (right) who pioneered the
triggering techniques for cloud chambers.

6 The last exercise in Homework Assignment 3 refers precisely to this issue.
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