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Tensor notation
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Tensor notation in three dimensions:

We present here a brief summary of  tensor notation in three dimensions simply to refresh
the memory of the reader and provide a smooth introduction to the relativistic  tensor
notation which follows.

Rotations:  The  equation  for  rotating  the  coordinates (x , y) of  a  vector  in  two
dimensions by an angle θ clockwise is given by:

(x '
y ') = ( cosθ sinθ

−sinθ cosθ)( x
y)

where x ' , y ' are the coordinates of the rotated vector. This can be generalized in
three dimensions by the equation:

                                                   X i
' = ∑

j=1

j=3

Rij X j                                         (1) 

where Rij is the rotation matrix and X j , X i
' are the initial vector and the vector after

rotation in three dimensions. 

Since most  of  these equations  involve  summations  we will  drop repeated summation
symbols and instead we will assume summation whenever we have two indices which are
repeated.  This  is  called  the  Einstein  convention.  In the  case  of  (1)  the  index j is
repeated  so  it  means  summation  over j and  we  can  drop  the  summation  sign.  So
equation (1) becomes simply:

                                                    X i
'
= Rij X j                                                

Equation (1) is the transformation of a vector under rotations.

A fundamental property of rotations is that they leave the magnitude of a vector invariant.
This leads to the following relationship:

                         X i
' X i

'
= Rij X j Ril X l = Rij Ril X j X l = X j X j               (2)

Which means that:
                                                      Rij Ril = δil                                                 (3)

Which is indeed a fundamental property of the rotation matrices.
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In a similar way that  relation (1) defines the object which is  called vector because it
transforms  according to  (1)  under  rotations,  we can  define  more  complicated  objects
which are called tensors.  For example a  rank-2 tensor is  an object with two indices
which transforms under rotations according to:

T ' ij = Ril R jm T lm

This can of course be generalized to n-rank tensors as:

                                               T ' ij.....n = Ril R jm ...... Rna T lm.....a

A polar vector in 3 dimensions (3-D) is an object which, given a coordinate frame, can be
defined as 

                                 a = a x , a y , az = a1, a2, a3

and transforms as a vector  under rotations. It is usual in text books that the standard  
(x,  y,  z)  coordinate  indices  are  replaced by the (1,  2,  3)  indices.  Furthermore,  parity
inverts all the components of a polar vector, such that:

                            P a = −ax ,−a y ,−az = −a1,−a2,−a3

Hence, a polar vector is an object which transforms as a vector under rotations and 
all its components change sign under parity.

The dot-product of two vectors is defined as:
                 
   a⋅b = a x bx  ay by  az bz = a1 b1  a2 b2  a3 b3 = ai b i i=1,2 ,3

As seen at the last step we have used the Einstein convention under which repeated 
indices indicate summation. 

The dot-product is invariant under rotation and parity transformations. Hence, it is 
a scalar. Lets see why is that. Suppose we have two vectors a ' , b ' which have been 
produced by  rotating two other vectors a ,b . In other words we have that:

                                                     a ' i=R il al                 (3)

                                                     b ' i=Ri m bm              (4)
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Using (3) an (4) we have that:

a '⋅b ' = a ' i b' i=R il Ri m a l bm = δlm a l bm = a l b l = a⋅b

Hence, the dot-product is invariant under rotations. Obviously since both vectors change 
sign under parity the dot-product will remain invariant under parity.

Similarly one can rewrite in this notation operators which are formed by taking dot-
products. For example

                                   ∇⃗⋅A⃗ = ∂i Ai    or  ∇⃗2 = ∂i ∂i

To define the cross product we first need to define the Levy-Civita tensor:

           
ijk

= 1 if (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2) (even permutations)

           
ijk

= −1 if (i, j, k) = (2, 1, 3) or (3, 2, 1) or (1, 3, 2) (odd permutations)

           
ijk

= 0    if any indices are the same.

The cross product is normally defined as:

                  a×b = a y bz−az b y x  az b x−ax bz y  a x by−ay bx z

where x , y , z are the unit vectors in the x, y, z directions.  This definition translated 
to tensor notation reads as:

                                                  a×bi = ijk a j bk   

where the index i indicates the ith component of the cross product.  Lets see how the cross 
product transforms under rotations:

Let a i b i c i be the components of three polar vectors in a coordinate system O which 
are related by
                                                c i = a×bi = ijk a j bk                                 (5)

and a i
b i be the components of the two polar vectors in a system O' which is rotated 

relative to O. In other words:
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                                 a i = Rij a j b i = Rij
b j  

The question we would like to answer is that given that a ,b transform under  rotations 
as vectors what can we conclude about the third object which is related to them via  (5) ?
If we can show that c i = Rij c j , then this means that the cross product of two vectors 
transforms also as a vector:

     c i=ε ijk a j bk=εαβγ Riα R jβ Rkγ R jl Rkm al
bm=εαβγ δ βl δγm R iα a l

bm=Riα εαβγ a β
bγ⇒

     c i=Riα 
a×bα ⇒ c i=Riα cα

In  other  words  the  cross-product  of  two  vectors  transforms  as  a  vector  under
rotations.  However,  under parity it does not change sign like a vector. Hence, it is
called axial vector. 

The quantity c⋅a×b = c i ijk a j bk as a dot product remains invariant under rotations.
However, it changes sign under parity hence it is called pseudoscalar.  Two examples
are presented to demonstrate how powerful is the tensor notation:

Example 1:  Show that  ∇⋅ ∇×A = 0

                    ∇⋅ ∇×A = ∂ iijk∂ j Ak =  ijk∂i ∂ j Ak = 0

The last step results from the summation an antisymmetric tensor, ijk , with a 
symmetric one, ∂i ∂ j .

Example 2: Show that ∇× ∇×A = ∇  ∇⋅A− ∇ 2 A

[ ∇× ∇×A]i = ijk∂ j  ∇×Ak = ijk∂ j klm ∂l Am  = ijk klm∂ j ∂l Am  (1)

 Using the identity:

                                  ijkklm =  il jm−i m jl                                                (2)
we have:

    12 ⇒ [ ∇× ∇×A]i = ijk klm∂ j ∂l Am = il  jm− i m  jl ∂ j ∂l Am ⇒

    [ ∇× ∇×A]i = ∂i ∂l Al −∂ j ∂ j Ai = ∇  ∇⋅A − ∇ 2 A

Lecturer: Prof. C. Foudas, F3.303,  Costas.Fountas@cern.ch 4



Particle Physics, 4th year undergraduate, Physics Dept. University of Ioannina,   Lecture 2 

Example 3: Show that the fully contracted product of a symmetric tensor, S ij with an 
antisymmetric tensor Aij vanishes.

So we have that S ij = S ji and Aij = −A ji . Next we form the fully contracted 
product of the two as follows.

                 S ij Aij =
1
2

( S ij Aij + S ji A ji) =
1
2

( S ij Aij − S ij Aij ) = 0

Introduction to the Covariant Notation:

All equations presented in this course are Lorentz invariant (relativistic invariant) and the
notation we use to write down Lorentz invariant equations is called covariant notation.
Use Lorentz invariant equations for two reasons: 

● The first reason addresses the need for relativistic invariant theories. One of the most
fundamental principles in physics is the fact that all equations and subsequently their
predictions  should  be  invariant  with  respect  to  the  frame  of  reference.  Otherwise
physics would not be an objective science. 

● The second reason is a practical one but no less important and it addresses the need for
using special relativity in High Energy Physics (HEP): At the energies that the HEP
deals most particles have velocities approaching the velocity of light so they need to be
treated according to the formulae of the Special Relativity. 

So we start by introducing the covariant notation and the Lorentz transformations within 
this notation. Every point in space-time can be represented by a contravariant 4-vector 
defined as: 

                                   x μ = ( x0 ; x⃗) = (ct ; x⃗)                                                  (1) 

The vector index in (1) is  running between μ = 0, 1, 2, 3  and the 4-vector is 
defined explicitly as:

                                    x μ = ( x0 ; x1 , x2 , x3) = (ct ; x , y , z )

where  t  is  the time and  x, y, z are the three space coordinates. Greek indices denote
always space-time variables whilst latin indices denote always 3-dimensional variables. 
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A more rigorous definition of a 4-vector in terms of its transformation properties will be
given later once the Lorentz transformation has been defined in covariant notation. 

Define to dot-product of two contravariant vectors to be the matrix product:

                                         x⋅y = x μ g μ ν yν                                                        (2)

where :                             g μ ν = (
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)                                        (3) 

is the metric tensor of the flat Minkowski space. Several books including Perkins use
several  different metric definitions. The end result does not of course change but it does
create confusion. The definition in (3) is the most popular in HEP and Relativity books
and this is what we will follow  throughout this course.

It is worth noticing that:
.
(1)We have used the Einstein convention where two indices that are the same indicate

summation. This of course implies that in a given expression one cannot have more
than 2 indices which are the same. Sometimes we refer to this summation as index
contraction  because  the  summed  indices  disappear  at  the  end.  This  is  also  why
summed indices can be re-named at wish: Since they disappear you can change the
index to whatever symbol is convenient for the calculation.

(2)The metric indices are subscripts in this case whilst the contravariant vector indices are
always superscripts. This is not an accident will become clear later why we do that.

In a more explicit way the definitions (2) (3) mean that:

     x⋅y = x μ g μ ν yν
= ( x0 x1 x2 x3)(

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)(
y0

y1

y2

y3) = x0 y0
− x⃗⋅y⃗

 Using the definitions the dot-product of a 4-vector with itself is:

                                (1)(2)(3) ⇒ x⋅x = (x0)2− x⃗2 = (ct )2− x⃗2
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Hence,  the dot-product of  a  4-vector  with  itself  is  a  relativistic  invariant  since a
spherical light wave should look spherical in every coordinate frame (the speed of light is
the same in all intertial reference frames). It will be shown later that the dot-product of
any 4-vectors is relativistic invariant.

Although we can  do all  of  calculations  using  contravariant  vectors,  we will  need to
include always the metric when we take dot-products. This is inconvenient and this is
why we need to introduce the covariant vectors:

A covariant 4-vector is defined as:

                                      x μ = ( x0 ;− x⃗) = (ct ;− x⃗) .                                  (4)

Notice that except the space vector sign which is negative we have also changed the 
4-vector index from superscript to subscript. 

Covariant tensors are always associated with subscripts in this notation. The dot-product 
can now be defined from the covariant and contravariant vectors without the explicit use 
of the metric as:

                                    x⋅x = x μ x μ
= (ct )2

− x⃗2
= gμν xν x μ                   (5)

Equations (4) and (5) imply that:

                                                     x μ = g μ ν xν

As seen here the metric can be used to lower an index and convert a contravariant
vector to a covariant vector. The opposite is also true if one defines the metric to be the
same for both covariant and contravariant indices:

                                                     g μ ν
= g μ ν  

and in this case the metric can be used to rise an index:

                                                     x μ
= g μ ν xν

and convert a covariant 4-vector to a contravariant 4-vector.

In this notation one can define the Kroneker delta as:
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                                           δ μ
ν=g μ ρ g ρν = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
Since  it must be that 

                                                        δ ν
μ

=
∂ x μ

∂ xν

we are driven to the convention where contravariant indices in the denominator become 
covariant indices in the numerator and visa versa. This can be seen also in the case where

                                                        g μ ν
=

∂ xμ

∂ xν

  

Clearly in this notation we have that g μ ν gν μ
= 4 .

Contravariant and covariant derivatives are then defined as:

                                           ∂μ = ∂
∂ x μ = ( ∂

∂ x0 ;∇⃗ )

and 

                                           ∂
μ

= ∂
∂ x μ

= ( ∂

∂ x0 ;−∇⃗)

Lorentz Transformations

Our definition of a contravariant 4-vector in (1) whilst easy to understand is not the whole
story. A contravariant 4-vector is an object defined as x μ

= ( x0 ; x⃗) that transforms
as a vector under Lorentz transformations. That is:

                                                       x μ'
= Λ ν

μ xν                                       (6)
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where xν is the 4-vector in a frame O and x μ' a 4-vector in the reference frame O'  related
to xν by the Lorentz transformation Λ ν

μ . The matrix Λ ν
μ is in the general case a complex

object which can represent a mixture of Lorentz boosts and 3-D rotations. However, in
the case of a pure Lorentz boost by β⃗ = β x̂0 = (υ/c ) x̂0 in the x-direction, it assumes a
form which is familiar from special relativity texts which can be written as:

                                           Λ ν
μ

= (
γ −β γ 0 0

−β γ γ 0 0
0 0 1 0
0 0 0 1

)                                  (7)

where υ⃗ is the relative velocity of the frame O' with respect to O.

                      (6)(7) ⇒ xμ'
= (

x0'

x1'

x2'

x3') = (
γ −β γ 0 0

−β γ γ 0 0
0 0 1 0
0 0 0 1

)(
x0

x1

x2

x3) ⇒

                               x0'
= γ( x0

− β⃗⋅⃗x)
                               x1' = γ (x1−β x0)                                                                  (8)
                               x2'

= x2

                               x2'
= x2

The four equations in (8) represent a Lorentz boost for β⃗ = β x̂0 .

Now that the general form of a Lorentz transformation has been defined under (6) we can 
investigate  the consequences of the relativity constraint namely that the product of a      
4-vector with itself must be  a Lorentz invariant:

              x ' ⋅ x ' = g μ ν x μ ' xν ' = g μν Λ α
μ xα Λ β

ν x β
⇒

              x ' ⋅ x' = (g μ ν Λ α
μ Λ β

ν ) xα x β
= x⋅x ⇒ (g μ ν Λ α

μ Λ β
ν ) = gα β ⇒

              (Λ α
μ Λμ β) = gα β ⇒ gα β g β σ

= ( Λ α
μ Λμ β) g β σ

⇒

                                           Λ α
μ Λμ

σ
= δα

σ                                                  (9)
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This is a basic property of the Lorentz transformations in general. It is as simple exercise
to show that (7), which is a particular type of Lorentz transformation is consistent with
(9) which holds for a whole family of Lorentz transformations.

Now we are ready to show that the product of any two 4 vectors is a Lorentz invariant 
quantity:

   (8)(9)   ⇒ x ' ⋅ y ' = x μ ' yμ ' = x μ ' yν ' g μν = Λ α
μ xα Λ β

ν y β g μ ν ⇒

               x ' ⋅ y ' = Λ α
μ Λ β

ν g μ ν xα yβ
= Λ α

μ Λμ β xα y β
= Λ α

μ Λμ
β xα yβ ⇒

                                            x ' ⋅ y ' = δα
β xα y β = x⋅y

Hence, the dot-product of any 4-vectors is a relativistic invariant.  Notice that this is
always the product of a covariant with a contravariant 4-vector.  So when we contract
covariant with contravariant indices the results of the summation is always going to be a
Lorentz invariant quantity which is what we usually want to have in physics. It is for this
reason that when we use Einstein's convention to sum over indices we always have two
same indices but one is covariant and the other contravariant. 

Next we can calculate the inverse boost of (6), ( Λ−1
) ρ

α . We  start with (9) and multiply 

both sides by ( Λ−1) ρ
α :

            Λ α
μ Λμ

β
= δα

β
⇒ Λ α

μ
( Λ−1

) ρ
α Λμ

β
= δα

β
(Λ−1

) ρ
α

= (Λ−1
) ρ

β       (10)

However since ( Λ−1) β
α is the inverse we have that:

                                             Λ α
μ
( Λ−1

) ρ
α

= δ ρ
μ                                            (11)

                                  δ ρ
μ Λμ

β = ( Λ−1) ρ
β ⇒ Λρ

β = ( Λ−1) ρ
β                      (12)

The Lorentz transformation for vectors (6) can be extended for rank-2 tensors. Hence, a 
rank-2 tensor is an object that under Lorentz transformations transforms as:

                                           T α β '
= Λ μ

α Λ ν
β T μ ν                                           (13)
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It is then easy to show that the sum:

                                                     T α β xα x β                                                     (14)

is a Lorentz invariant quantity if T α β transforms according to (13) and xα , xβ transform
according to (6). Obviously (13) can be extended to any rank-n tensor. In that case we
have from (14)  that  any quantity where  all  the  indices  have  been summed  up (fully
contracted indices) will be a relativistic/Lorentz invariant.

Parity transformation properties of 4-vectors:

In a similar way as in the 3-D case, a combination of the Lorentz and Parity properties 
can be used to classify the various fields and currents we use in Particle Physics as 
follows:

· Quantities which are invariant under Lorentz transformations are called scalars 
(S) if they are even under parity. If they are odd under parity they are called 
pseudo-scalars (P). 

· Similarly, by definition, the 4-vectors which transform under parity as:     
             
                                    V μ

=(V 0 ; V⃗ )→V P
μ
=(V 0 ;−V⃗ )

      are commonly referred to as polar  4-vectors (V).

· Finally, the category of Lorentz vectors which transform under parity as:

                                          Aμ
=( A0 ; A⃗)→ AP

μ
=(−A0 ; A⃗)

            are called axial 4-vectors (A).
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Maxwell’s Equations in Covariant Notation

One can see how powerful can be the covariant notation by writing Maxwell's equations 
in a  covariant form. Start with Maxwell's equations in the standard 3D notation:

                                                   ∇⃗⋅E⃗ = 4π ρ                     
      
                                                   ∇⋅B = 0  

                                                   ∇⃗×E⃗ = −
1
c

∂ B⃗
∂ t

          

                                                    ∇⃗×B⃗ =
4π

c
J⃗+

1
c

∂ E⃗
∂ t

Define the electromagnetic 4-vector potential and 4 vector current to be

                                         Aμ
= (Φ ; A⃗)      J μ

= ( ρ ; J⃗ )                               (15)

where Φ , A⃗  are the electromagnetic scalar and vector potential and ρ , J⃗  are the charge 
and current densities. The Electromagnetic Field tensor can be defined as a function of 
the 4-vector potential as:

                                               F μ ν
= ∂

μ Aν
−∂

ν Aμ                                           (16)

which in terms of the electric and magnetic fields can be written as:

                                   F μ ν
= (

0 −E x −E y −E z

E x 0 −B z B y

E y B z 0 −Bx

E z −B y B x 0
)                                 (17)

The field tensor can also be written as:
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                         F α β = gα μ g β ν F μν
= (

0 E x E y E z

−E x 0 −Bz B y

−E y B z 0 −B x

−E z −B y Bx 0
)                    (18)

Another form of the field tensor the dual,  F̃ μ ν  , can be defined by:

                                                 F̃ μ ν
=

1
2

ϵ
μ ν α β F α β                                (19)

where ϵμν α β  is defined to be : ϵμν α β
=  zero if any indices are the same, -1 for odd 

permutations and +1 for even permutations of the indices.

Using (15)(16)(17)(18)(19) the four Maxwell Equation can be written as two covariant 
equations:

                                                        ∂μ F μ ν
=

4π
c

J ν                               (20)

                                                         ∂μ F̃ μ ν
= 0                                       (21)

The first one corresponds to the first and the fourth Maxwell equations which contain 
sources and the second one corresponds to the other two.
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