
Lecture 12                                                                                                               30/03/24

Lagrangians in Classical and Quantum Physics

In the previous lectures we presented a relativistic quantum description of the free spin-0
and spin-½ particles via the Klein-Gordon and the Dirac equations respectively. We also
discussed the Maxwell equations which describe a massless spin-1 particle the photon. In
this lecture we will present an equivalent formulation to describe the same particles based
on Lagrangians from which one can extract the same equations of motion in an analogue
way  as  done  in  Classical  Mechanics.  Both  formulations  describe  identical  physical
processes and none of them provides more information than the other. The advantage of
starting from the Lagrangian is that this way symmetries become apparent. Furthermore,
one can introduce Quantum Field Theories more naturally starting from the Lagrangian
formulations.

We  will  start  with  a  short  review  of  the  the  Lagrangian  formulation  in  Classical
Mechanics  and will  discuss  the  role  that  space time  symmetries  play in  constructing
conserved quantities.

The Principle of Least Action:  

In Classical Mechanics, equations of motion can be extracted using the principle of Least
Action. The action of a given physical system is defined as

                                   S = ∫t 1

t 2

L(q i , q̇i , t)dt

where L(qi , q̇ i , t ) is  the  Lagrangian  which  is  a  function  of  q i = q i( t) and

q̇ i =
dqi ( t )

dt
, the generalized coordinates and velocities and time. The Lagrangian is

defined as
                                                L = T − V

where T and V are the kinetic and potential energies of the system respectively. The index
i runs  between 1 ≤ i ≤ N where  N is  the  number  of  degrees  of  freedom of  the
system under consideration.

According to the Principle of Least Action the equations of motion can be extracted by
considering path variations such as

                                           q i( t)→q i
'
( t) = q i( t)+δ qi (t )

under the condition that the generalized coordinate variation at the path ends vanishes

                                           δ q i( t1) = δq i( t 2) = 0
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and by requiring that the action integral has a minimum
 
                                            S = S min ⇒ δ S = 0

The demand that the action has a minimum implies that

                    δ S = ∫t1

t 2

δ L(q i , q̇ i , t) = 0 ⇒

                    δ S = ∫t1

t 2

∑i [ ∂ L
∂ q i

δ qi+
∂ L
∂ q̇i

δ q̇ i] = 0 ⇒

                    δ S = ∫t1

t 2

∑i [ ∂ L
∂ q i

δ qi+
∂ L
∂ q̇i

d
dt

δ q i] = 0 ⇒

                    δ S = ∫t1

t 2

∑i [ ∂ L
∂q i

δ q i+
d
dt ( ∂ L

∂ q̇ i

δq i)− d
dt ( ∂ L

∂ q̇i )δ qi] = 0 ⇒

                    δ S = ∫t1

t 2

∑i [ ∂ L
∂q i

δ q i−
d
dt ( ∂ L

∂ q̇ i )δq i] + ∑i [ ∂ L
∂ q̇ i

δq i]t1

t2

= 0 ⇒

However, due to the fact that the path variations vanish at the ends of the path we have
that

                                               ∑i [ ∂ L
∂ q̇i

δ q i]t 1

t 2

= 0

Finally we have that

                                ∫t 1

t 2

∑i [ ∂L
∂ q i

δq i−
d
dt ( ∂ L

∂ q̇ i)δ qi] = 0 ⇒

                                                
d
dt ( ∂ L

∂ q̇ i
)−∂ L

∂ q i

= 0

These  are  the  Euler-Lagrange equations  which  are  used  to  extract  the  equations  of
motion from the Lagrangian of a given system. Since the variation of the generalized
coordinates vanish at the beginning and the end of the path, the Lagrangian of a system is
not  uniquely define and we can always add a  total  derivative df (q i (t ) , t)/dt to  the
Lagrangian without any effect to the equations of motion. This is because the action will
changes as
                                      S → S + f (q i (t 2) , t ) + f (q i( t 1) , t)
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Example 1:  Derive the equation of  motion for a free particle moving at the positive x-
direction.

The kinetic energy of such a particle is given by

                                                       T =
1
2

m ẋ2  

and since the particle is free the potential energy vanishes

                                                       V = 0

Hence, the Lagrangian is given by

                                                       L =
1
2

m ẋ2

and

                                                      
∂ L
∂ x

= 0 ,
∂ L
∂ ẋ

= m ẋ

Therefore

                                                      
d
dt

(m ẋ) + 0 = 0 ⇒ m ẍ = 0

which tells us that the particle is moving freely on the x-axis and has an acceleration
which is equal to zero. Therefore, it has a constant velocity which can be determined by
the initial conditions.

 Example 2:  The kinetic and potential energies of a simple harmonic oscillator 
oscillating on the x-axis are

                                            T =
1
2

m ẋ2  V =
1
2

k x2

Extract the equations of motion of the simple harmonic oscillator.

The Lagrangian is given by   L =
1
2

m ẋ2 −
1
2

k x2
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Therefore,                 
∂ L
∂ ẋ

= m ẋ
∂ L
∂ x

= −kx

Hence,

                       m ẍ + kx = 0 ⇒ ẍ +
k
m

x = 0 ⇒ ẍ + ω2 x = 0

This is the equation of the simple Harmonic Oscillator. 

 Conservation Laws as Consequence of the Symmetries of the
Lagrangian    

Emmy Noether's theorem states that continuous symmetries of the  Action/Lagrangian
lead to conservation laws and conserved quantities. In this section we will consider space-
time symmetries and derive the corresponding conservation laws.

Homogeneity of time: “The Lagrangian of a closed system cannot depend explicitly on
time”. In practice this symmetry dictates that the result of an experiment does not depend
upon the time that the experiment was performed. Due to the fact that the limits of the
action integral depend upon time it is more convenient here to consider time variations of
the Lagrangian. The total time-derivative of the Lagrangian is given by

                             
dL
dt

= ∑i [ ∂ L
∂ q i

q̇ i +
∂ L
∂ q̇ i

q̈i] +
∂ L
∂ t

                             (1)
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but since the Lagrangian does not depend explicitly on time then we have that

                            
∂ L
∂ t

= 0                                                                               (2)

From (1) and (2) we have that

                            
dL
dt

= ∑i [ d
dt ( ∂L

∂ q̇ i ) q̇ i +
∂ L
∂ q̇ i

q̈i] =
d
dt [∑i

∂ L
∂ q̇ i

q̇ i] ⇒

                            
d
dt [∑i

∂ L
∂ q̇ i

q̇ i−L] = 0

The quantity H = ∑i

∂ L
∂ q̇ i

q̇ i−L is called the Hamiltonian and represents the energy

of  the  system.  Hence,  the energy of  the  system is  conserved as  a  consequence of
homogeneity of time.

Homogeneity  of  space:  “The  Lagrangian  should  be  invariant  with  respect  to
translations in  space”. Physical processes should not depend on the space point that they
take place. Consider a translation in space such as

                 r⃗ → r⃗ ' = r⃗+ ε⃗ ⇒ ˙⃗r ' = ˙⃗r and δ r⃗ = ε⃗ ; δ ˙⃗r = 0

Therefore,  in  this  case only the generalized  coordinates  vary and not  the  generalized
velocities. Hence,

                                    δ L = ∑α

∂ L
∂ r⃗a

δr⃗ a = ε⃗ ⋅∑α

∂ L
∂ r⃗a

= 0 ⇒

                                    δ L = ε⃗ ⋅∑i

∂ L
∂ r⃗a

= ε⃗ ⋅∑α

d
dt

∂ L
∂ ˙⃗ra

= 0 ⇒

                                    δ L = ε⃗ ⋅
d
dt [∑i

∂ L
∂ ˙⃗ra ] = 0 ⇒

                                    δ L = ϵ⃗ ⋅
d p⃗
dt

= 0 ⇒
d p⃗
dt

= 0
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Therefore the homogeneity of space is the reason that  momentum is conserved as a
consequence of homogeneity of space.

Isotropy of space: “The Mechanical properties of a system do not vary if it is rotated as
a whole”. Lets consider a rotation of the system about an axis  δ ϕ̂ = δ ϕ k̂ where

k̂ is the unit vector along the z-axis. The variation of a vector r in this system due to
rotation is equal to 

                    δ r⃗ = δ φ̂× r⃗

By taking derivative with respect of time we can
calculate also the velocity variation 

                   δ υ⃗ = δ φ̂× υ⃗

The variation of the lagrangian due to this
rotation is

                                

                               δ L = ∑a [ ∂ L
∂ r⃗ a

δ r⃗a +
∂ L
∂ υ⃗a

δ υ⃗a] ⇒

                               δ L = ∑a [ d
dt ( ∂L

∂ υ⃗a)δ r⃗ a +
∂L
∂ υ⃗a

δυ⃗a] ⇒                  

                                δ L = ∑a [ d
dt [ ∂ L

∂ υ⃗a ]⋅δ φ̂×r⃗ a +
∂L
∂ v⃗a

⋅δφ̂×υ⃗a] ⇒

                                δ L = ∑a [ d p⃗a

dt
⋅δ ϕ̂× r⃗ a + p⃗a⋅δφ̂×υ⃗a] ⇒

                                δ L = ∑a [ δφ̂⋅r⃗a×
d p⃗a

dt
+ δφ̂⋅υ⃗a× p⃗a] ⇒

                                δ L = δ φ̂⋅∑a [ r⃗a×
d p⃗a

dt
+ υ⃗a× p⃗a] ⇒

                                δ L = δ φ̂⋅
d
dt
∑a

r⃗a× p⃗a ⇒   δ L = δ φ̂⋅
d M⃗
dt

where
                                 M⃗ = ∑a

r⃗a× p⃗a

is the angular momentum of the system. 
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By requiring that the physical processes and results do not change under rotation

                                      δ L = 0 ⇒
d M⃗
dt

= 0

In conclusion, isotropy of space has as result that the angular momentum is conserved.

Action and Lagrangian in Quantum Field Theory

In  Quantum Field  Theory (QFT)  fields  are  operators  which  can  create  or  annihilate
particles. In other words for each type of particle we have the corresponding field. We
have the scalar fields which describes particles with spin-0 and satisfy the Klein-Gordon
equation, we have the spinor fields which describe spin-1/2 particles and satisfy the Dirac
equation and we have the vector fields which describe spin-1 particles. A QFT can also
be formulated in terms of an action derived from a Lagrangian. 

                        S = ∫Ω
dx0L = ∫ dx0∫ d 3 x L = ∫Ω

d 4 x L

where L is a Lagrangian and L is the Lagrangian density. Both are functions of the
fields and their first derivatives.  Ω is the integration 4 dimensional volume.  The action
can be written as1 

                                    S = ∫Ω
d4 x L(Φ( x) ,∂ μ Φ( x))

The  action  has  the  same  units  as ℏ .  Hence,  in  the  unit  system used  here,  where
ℏ = c = 1 , the action is just a number. Given that d 4 x has units of length in the

fourth  power  this  means  that  the  Lagrangian  density L(Φ( x) ,∂μ Φ(x )) must  have
units of  mass to the fourth power.

The Euler-Lagrange equations can also be derived from the action in a similar way as in
Classical Physics. One considers a functional variation of the field δΦ which should
vanish at the boundary ∂ Ω of the 4 dimensional space of integration Ω and extract
this way the general equations of motion.

                      δ S = 0 ⇒ ∫Ω
d 4 x[ ∂ L

∂Φ
δΦ +

∂ L
∂(∂μ Φ)

δ(∂μ Φ)] = 0 ⇒

                      ∫Ω
d4 x [ ∂ L

∂Φ
δΦ +

∂ L
∂(∂μ Φ)

∂μ(δΦ)] = 0 ⇒

1 We suppressed here indices referring to different fields and their derivatives. 
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           ∫Ω
d4 x[ ∂ L

∂Φ
δΦ + ∂μ( ∂ L

∂(∂μΦ)
δΦ) − ∂μ( ∂ L

∂(∂μ Φ))δΦ] = 0

The second term can be written using Gauss's theorem as

          ∫Ω
d4 x [∂μ( ∂ L

∂(∂μ Φ)
δΦ)] = ∫∂ Ω d Σ μ

∂μ( ∂ L
∂(∂μ Φ)

δΦ)
However,  because δΦ vanishes  on  the  boundary of  the  integration  space ∂ Ω the
second term vanishes. Hence, we have that

                            ∫Ω
d4 x [ ∂ L

∂Φ
− ∂μ( ∂ L

∂(∂μΦ))] δΦ = 0

and this gives us the Euler-Lagrange equations for the Field Φ.

                                         ∂μ( ∂ L
∂(∂μ Φ)) −

∂ L
∂ Φ

= 0

Similarly to Classical Mechanics the Lagrangian density is not unique because one can
add to it a total derivative such as ∂

μ F μ (Φ , x) and this will not change the equations
of motion because the variations of the field δΦ vanish at the boundary.

Example 1:  Consider the Lagrangian density for a real scalar field which is free of  
                      interactions.

                     L = ∂
α Φ (x )∂α Φ (x )−m2Φ2

(x )

                       where m is the mass of the scalar particle represented by Φ(x).
                       (a) What is the unit of the field Φ(x) ?
                       (b) Derive the equation of motion for the field Φ(x).

Given that the Lagrangian density must have units of mass to the fourth power and that
the derivatives have units of inverse length (same as units of mass) we conclude that the
field Φ(x) must have units of mass.

         
∂L

∂(∂μ Φ)
= ∂

∂(∂μ Φ)
(∂α Φ(x )∂α Φ(x )) = g μ α

∂α Φ( x)+δ α
μ
∂

α Φ( x) ⇒
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∂L

∂(∂μ Φ)
= 2∂

μ Φ(x )    (1)

                                           
∂ L
∂Φ

= 2 m2Φ( x)          (2)

From (1) and (2) and the Euler Lagrange equations we get 

                       ∂μ( ∂ L
∂(∂μΦ)) −

∂ L
∂ Φ

= 0 ⇒ (∂μ∂
μ
+m2)Φ( x) = 0

This is the Klein-Gordon equation. In conclusion this Lagrangian density has a single
digree of freedom (field) and describes a scalar or a pseudoscalar field with mass m. 

Example 2:  Consider the Lagrangian density for a complex scalar field which is free of 
                     interactions

                     L = ∂
α Φ*

( x)∂α Φ( x)−m2 Φ*
( x)Φ(x )

                   where m is the mass of the scalar particles represented by Φ(x) and Φ*
(x )

                   (a) What is the unit of the fields Φ(x) and Φ*
(x ) ?

                   (b) Derive the equation of motion for the fields Φ(x) and Φ*
(x ) .

The fields Φ(x) and Φ*
(x ) have units of mass.

∂ L

∂(∂μ Φ*
)

= ∂
∂(∂μ Φ*

)
(∂α Φ*

∂α Φ (x )) = g μα
∂α Φ( x) = ∂

μΦ( x)           (1)

∂ L

∂Φ* = m2Φ (x )                                                                                            (2)

From (1) and (2) and the Euler Lagrange equations we get 

                       ∂μ( ∂ L
∂(∂μΦ*

)) −
∂ L
∂Φ* = 0 ⇒ (∂μ∂

μ
+m 2)Φ(x ) = 0
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Similarly by differentiating with respect to Φ we get the equations of motion for the
field Φ* .

                                             (∂μ∂
μ
+m 2)Φ*

( x) = 0

So this Lagrangian density describes two scalar particles which have the same mass. Once
we introduce  an  electromagnetic  field  we will  observe that  these  are  two  oppositely
charged scalars which have the same mass.

In both examples (1) and (2) we see that the Lagrangian density has two distinct parts. A
kinetic part which is a function of the field derivatives to the second power and the mass
part which is a function of the field to the second power.

Example 3: The Vector Field Lagrangian density is given by

                                                  L = −
1
4

F μν F μ ν   

Where Aμ
= (Φ ; A⃗) is the vector potential and F μ ν

= ∂
μ Aν

−∂
ν Aμ the Maxwell 

tensor which satisfies F μ ν
= −F ν μ . 

(a) What is the unit of the field Aμ ?
(b) Derive the equations of motion for the field Aμ .

The field Aμ has units  of mass  and has 4 components.  So there are four degrees of
freedom.  There  is  no  mass  term  here  becuase  this  Lagrangian  density  will  describe
photons which are massless.

The Lagrangian density can be written as

                         L = −
1
4

(∂ α Aβ − ∂ β Aα) F α β
= −

1
2
∂α Aβ F α β

Using this Lagrangian density and the Euler-Lagrange equations we can extract the 
equations of motion for Aμ .

    
∂ L

∂∂μ Aν

= −
1
2

∂
∂∂μ Aν

(∂α Aβ F α β) = −
1
2

∂
∂∂μ Aν

(∂α Aβ (∂α Aβ
−∂

β Aα)) ⇒

    
∂ L

∂∂μ Aν

= −
1
2

[δ α
μ δ β

ν (∂α Aβ
−∂

β Aα) ]−1
2

[∂α Aβ( g μ α gν β
−g μ β g να )] ⇒
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∂ L

∂∂μ Aν

= −
1
2

(∂μ Aν
−∂

ν Aμ) −
1
2

(∂μ Aν
−∂

ν Aμ) = F μ ν
                       (1)

     
∂ L
∂ Aν

= 0                                                                                                       (2)

Finally substituting (1) and (2) into the Euler Lagrange equations 

                                     ∂μ( ∂ L
∂ ∂μ Aν

) −
∂ L
∂ Aν

= 0

we get two of the Maxwell equations in the absence of the electromagnetic current and
charge density.
                                      ∂μ F μ ν

= 0

The other two Maxwell equations come from the dual tensor

                                     ∂μ F̃ μ ν
= 0

where

                                     F̃ μ ν
=

1
2

εμ ν α β F α β

We would like to identify the photon with the field Aμ . However, a physical photon is
massless and has only two degrees of freedom (Left Handed/Right Handed) whilst Aμ

has four degrees of freedom. Gauge invariance of the Maxwell equations and the freedom
to choose a  specific  gauge permits  us  to  solve Maxwell's  equations  and through this
process only two of the four degrees of freedom remain which correspond to the two
different kinds of photon polarization. However, the details of this are beyond this course
and can be found in text books of QFT1.

In the presence of charge and/or current density the Lagrangian density acquires an extra
term where the 4-vector current couples to the 4-vector potential

                                     L=−
1
4

F μν F μ ν +
4π
c

J μ Aμ

In this case the derivative with respect to the field is no longer zero. 

1 For quantizing the photon field in a non-manifestly covariant way using the Coulomb Gauge look in 
Bjorken Drell, Quantum Fields, Vol. II. For quantizing the photon field in a manifestly covariant way 
via the Gupta-Bleuler method look in Itzykson and Zuber, Quantum Field Theory.
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Instead we have that
 

                                                      
∂ L
∂ Aν

=
4 π
c

J ν

Which will give us the Maxell equations at the presence of charge and/or current density.

                                      ∂μ F μ ν
=

4 π
c

J ν

Example 4: Consider the Lagrangian density of the Dirac Field.

                            L =
i
2

(Ψ̄ γμ
∂μ Ψ − (∂μ Ψ̄ )γμ Ψ )−m Ψ̄ Ψ

                     
                     (a) What is the unit of the field Ψ ?
                     (b) Derive the equations of motion for Ψ.
                     (c) Show that the Lagrangian density

                            L = i Ψ̄ γ μ
∂μΨ − mΨ̄ Ψ

                           
                         is equivalent and describes also a fee spin-½ fermion.

The field Ψ has units of mass to the power of 3/2 because the derivative has units of mass
and this way the Lagrangian density has units of mass to the fourth power. In general
spin ½ fermions have mass so this Lagrangian density has a kinetic part which depends
upon the field derivatives and a mass part which depends upon the square of the field.

Here we will extract the equations of motion for the field Ψ. Students are encouraged to
do the same for the field Ψ̄ .  We start by calculating the derivatives of the Lagrangian
density with respect to the field and its derivative.

             
∂ L

∂∂μΨ̄
= −

i
2
(γμ

)abΨ b ,   
∂ L
∂Ψ̄ a

= +
i
2
(γμ

)ab∂μΨ b − mΨ a

Next we substitute these in to the Euler-Lagrange equations 

                                       ∂μ( ∂ L
∂ ∂μ Ψ̄ a

) −
∂ L
∂Ψ̄ a

= 0 ⇒

to get
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                    −
i
2
(γμ

)ab ∂μ Ψ b −
i
2
(γ μ

)ab∂ μ Ψ b + m Ψ a = 0 ⇒

              
                     −i (γμ

)ab ∂μΨ b + mΨ a = 0 ⇒

                       [ i γμ
∂ μ−m ]Ψ ( x) = 0   

Which is the Dirac equation.

However, we are free to add to the Dirac Lagrangian density a total derivative term such
as

                                              
i
2
∂μ (Ψ̄ γμ Ψ )

which will not change the equations of motion since the variations of the field vanish at
the boundary. Therefore we have that 

             L =
i
2

(Ψ̄ γμ
∂μ Ψ − (∂μ Ψ̄ )γμ Ψ )−m Ψ̄ Ψ +

i
2
∂μ (Ψ̄ γμ Ψ ) ⇒

                                     L = i Ψ̄ γ μ
∂μΨ − mΨ̄ Ψ     

Global and Local Symmetries of the Lagrangian Density

Consider  a  Lagrangian  density L which  is  a  function  of  a  field Φ( x) and  its
derivative ∂μ Φ( x) and  assume  that  the  field Φ( x) is  a  solution  of  the   Euler
Lagrange equations1.  Suppose next  that  the  Lagrangian density is  invariant  under  the
transformation

                     Φ( x)→Φ( x) + i e α Φ( x) ⇒ δΦ( x) = i eα Φ( x)               (1)   

where e is a constant and α could be a constant or it could be a function of x. As seen here
this transformation is very different than the space-time transformations we considered
before. This is a transformation which leaves the space-time point the same but changes
the  field  in  a  way  that  it  is  proportional  to  the  field  and  if  often  called  internal
transformation. Furthermore, the variation of the field is non-zero everywhere in space
time. Since this is a continuous transformation we expect from Noether's theorem that it
should result to a conserved quantity. 

1 For simplicity we assume only one field but this can easily be generalized to any number of fields.
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Indeed suppose that the action remains invariant under this transformation. Then we have 
that

         ∫Ω
d4 x[ ∂ L

∂Φ
δΦ + ∂μ( ∂ L

∂(∂μΦ)
δΦ) − ∂μ( ∂ L

∂(∂μ Φ))δΦ] = 0 ⇒

However, since the Euler-Lagrange equations are satisfied by Φ( x) , the first and the
third  term cancel  out.  Furthermore,  since δΦ( x) = i eα Φ( x) does  not  vanish  the
second term survives and finally we have that.

                                             ∂μ( ∂ L
∂(∂μ Φ)

δΦ) = 0

This can be generalized in the case we have a number of degees of freedom (a number of
fields) as 

                                        ∂μ(∑a

∂ L
∂(∂μΦa)

δΦa) = 0

Next we need to look more closely on the field variation shown in (1). If the quantity α is
just  a  constant  then  then  transformation  is  called  global  transformation  and  the
corresponding symmetry is called global symmetry.

In this case there is a conserved current

                              J μ
= ∑a

∂ L
∂(∂μ Φa)

δΦa  such that ∂μ J μ
= 0                      (2)

In conclusion, the global symmetry of the Lagrangian density resulted to a conserved
current. The continuity equation shown in (2) can be written as

                 
∂ J μ

∂ x μ = 0 ⇒
∂ ρ
∂ t

+∇⃗⋅J⃗ = 0 ⇒
dQ
dt

= −∫S
J⃗⋅d s⃗

which gives the conservation of charge.  Hence, internal symmetries are responsible
for the conservation of charges of the different interactions.
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Example 1:  Consider the complex scalar field Lagrangian density

                          L = ∂
α Φ*

( x)∂α Φ( x)−m2 Φ*
( x)Φ(x )

which is invariant under the global phase transformation 

                              Φ( x)→e
i e

Φ( x) ⇒ δΦ ≈ i eΦ( x)    

where e is a constant. Based on what we have presented there is a conserved current

          J μ
= ∑a

∂ L
∂(∂μ Φa)

Φa =
∂ L

∂(∂μΦ)
(i eΦ) +

∂ L

∂(∂μΦ*
)
(−i eΦ*

) ⇒

                               J μ
= ∂

μΦ*
(+i eΦ) + ∂

μ Φ(−i eΦ*
) ⇒   

                                      J μ
= i e (Φ∂

μ Φ*
− Φ*

∂
μΦ )

Which is the conserved current which we derived using the Klein-Gordon equation and in
fact it is trivial to show that this is conserved 

                                                       ∂μ J μ
= 0

using the Klein-Gordon equation.  So, this tells us that charge is conserved in a world
made of opposite charged scalar or pseudoscalar particles.

Example 2:  Consider the Dirac Lagrangian density

                       L =
i
2

(Ψ̄ γμ
∂μΨ − (∂μ Ψ̄ )γμ Ψ )−m Ψ̄ Ψ

which is invariant under the global phase transformation where

                      Ψ ( x)→e
−i e

Ψ (x ) ⇒ δΨ ≈ −i eΨ ( x)

and

                      Ψ̄ ( x)→e
+i e

Ψ̄ (x ) ⇒ δΨ ≈ +i e Ψ̄ ( x)

based on this the conserved current is
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                  J μ
=

∂ L
∂(∂μ Ψ )

(−i eΨ ) + (+i e Ψ̄ )
∂ L

∂(∂μ Ψ̄ )
⇒

                   J μ
=

i
2

Ψ̄ γμ
(−i e Ψ ) − (+i e Ψ̄ )

i
2

γμ Ψ ⇒

                   J μ
= eΨ̄ γμΨ

which is the Dirac current we extracted when we studied the Dirac equation and one can 
show explicitly that is conserved using the Dirac equation.    

So far  we have considered internal  transformations  which represented  a rotation  at  a
constant angle/phase on the complex plane. In other words we considered that the same
phase change occurs at every space-time point. Next we will consider rotations on the
complex  plane  where  the  phase  varies  in  space-time.  These  are  called  local
transformations or better known as  gauge transformations.  Lets consider the simplest
gauge transformation 

                       Φ( x)→Φ' ( x) = ei e α(x )Φ( x) ⇒ δΦ ≈ i e α( x)Φ( x)          (G)

and lets study how the Lagrangian density of the complex scalar field transforms under
this transformation.  

Substituting Φ( x)→Φ' ( x) in to 

                               L = ∂
μ Φ*

(x )∂μΦ( x)−m2Φ*
(x )Φ( x)

we find that the Lagrangian density is not invariant under the gauge transformation G.
Whilst the mass term is invariant, the derivatives result to extra terms 

                   ∂μ Φ' ( x) = ei e α(x )
∂ μΦ( x) + i e ∂ μα( x) ei e α (x )Φ( x)

which depend upon ∂μ α (x ) . There is no reason why physical phenomena should not
be invariant when the phases of the fields which describe the particles depend on space-
time.  Therefore some other  physical  process  has  not  been taken in  to  account  which
would cancel the extra terms that make the Lagrangian density non-invariant. The answer
to this  is  that  we have not  taken in to  account  that  our charged particles  in order to
interact need to be able to emit and absorb photons. 
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So we introduce photons in to this theory and we require that the resulting Lagrangian
density is invariant under the gauge transformation G.

This  is  accomplished  by  introducing  the  covariant  derivative which  replaces  the
derivative in the Lagrangian density

                                             Dμ = ∂μ−i e Aμ

where Aμ is a vector field which we will identify later with the photon.

The new Lagrangian density is

                            L = (Dμ Φ)
*
( x) DμΦ( x)−m 2Φ*

(x )Φ( x)

The field Aμ should also transform under the gauge transformation in such a way so
that  it  cancels  the  unwanted  terms  which  depend on ∂μ α (x ) .  So  under  the  gauge
transformation we have that

                                   Φ( x)→Φ' ( x) = ei e α(x )Φ( x)
and

                                   Aμ→ A 'μ = ?

and the question now is if there exists a transformation of the vector field which leaves
the new Lagrangian density invariant. 

The modified Lagrangian density can be made invariant under the Gauge transformation
if we require that

                  (∂ μ−i e Aμ ' )Φ ' ( x) = ei e α(x )
(∂ μ−i e Aμ)Φ( x)                      (1)

where  the  primed  fields  are  the  fields  which  have  been  transformed  by  the  gauge
transformation.

(∂ μ−i e Aμ ' )Φ '( x) = (∂μ−i e Aμ ' )[ e
i e α (x )

Φ( x)] =

ei e α(x )
∂ μΦ( x) + i e ∂μ α (x )ei eα (x)Φ( x )−i e Aμ ' ei e α(x )Φ( x)            (2)

From (1) and (2) we have then that 
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ei e α(x )
∂ μΦ( x) + i e ∂μ α (x )ei eα (x)Φ( x )−i e Aμ ' ei e α(x )Φ( x) =

ei e α(x )
∂ μΦ( x)−i e Aμ ei e α(x )Φ( x) ⇒

∂μ α (x )−Aμ ' = −Aμ ⇒ Aμ ' = Aμ + ∂ μ α( x)

Hence, the Lagrangian 

                          L = (Dμ Φ)
*
( x)Dμ Φ( x)−m 2Φ*

(x )Φ( x)

is invariant under the gauge transformation where 

                          Φ( x)→Φ' ( x) = ei e α(x )Φ( x)

                          Aμ → Aμ ' = Aμ + ∂μ α( x)

but  we are  not  done yet  because  the  field Aμ which enters  now in  the  Lagrangian
density has no kinetic term. We would like that Aμ satisfies Maxwell's equation so we
need to add the Maxwell Lagrangian density 

                      LMaxwell = −
1
4

F μ ν F μ ν where F μ ν
= ∂

μ Aν
−∂

ν Aμ

We see that F μ ν
= ∂

μ Aν
−∂

ν Aμ is gauge invariant. Hence, the final Lagrangian 
which is gauge invariant will be

                    L = (Dμ Φ)
*
( x) Dμ Φ( x)−m 2Φ*

(x )Φ( x) −
1
4

F μ ν F μ ν

In the rest we will  try to understand the physical meaning and the predictions of this
Lagrangian density. Another way of writing this Lagrangian density is

   L = ∂
μ Φ*

∂μΦ−m 2Φ* Φ−
1
4

F μ ν F μν+i e (Φ*
∂

μ Φ−Φ∂
μΦ*) Αμ+e2Φ* Φ Aμ Aμ

 We  will  describe  next  what  is  the  physical  meaning  of  the  different  terms  of  the
Lagrangian density.
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The first two terms describe two charged scalar or pseudoscalar particles with equal mass
m. The third term gives the free Maxwell's equations for the field Aμ . In other words it
tells  us  that  the  vector  field  we introduced  in  the  covariant  derivative  is  indeed the
photon. 

The  last  two  terms  describe  how  the  scalar/pseudoscalar  particles  interact  with  the
photons. The fourth term describes the coupling of the photon with the well known Klein-
Gordon  conserved  current.  As  we  see  there  we  have  two  Φ  fields  (incoming  and
outgoing) and one Aμ field involved. Therefore it describes a charged particle Φ either
absorbing or emitting a photon.  The fifth term involves two Φ fields and two Aμ fields
and therefore it describes the absorption or emission of two photons at the same space
time point by a  Φ particle. The fourth and the fifth terms are the interaction terms and
contribute  as  sources  to  Maxwell's  equations.   These  two  terms  can  be  represented
diagrammatically as shown in Figure 3.

The theory that we just  worked out is called  Scalar Quantum Electrodynamics and
describes electromagnetic interactions of charged scalar or pseudoscalar particles. 

As  demonstrated  here  the  demand  for  gauge  invariance  resulted  in  predicting  the
correct interaction between charged particles and photons and therefore justified the
introduction  of  the  covariant  derivative  which  in  the  past  we  introduced  somewhat
arbitrarily via the minimal coupling. In other words gauge invariance is the origin of the
source terms in Maxwell's  equations.  Predicting the correct couplings between matter
particles and gauge bosons is one of the features that made gauge theories attractive.   
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Figure 3: Interactions of a scalar or pseudoscalar 
particle with a photon (left) and two photons (right)
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