
Lecture 11  -  29/02/24

Time Reversal

Time Reversal is  the operation according which the space-time coordinates change as
follows:
                                         ( x⃗ , t)→( x⃗ ' , t ') = ( x⃗ ,−t)

Similarly to parity and charge conjugation, theories whose equations are invariant under
time reversal are said to 'have the Time Reversal symmetry'. One wonders what does this
exactly mean in terms of the physical processes. Suppose that an interaction causes the
transition from a state A to a state B (A →B) . If this interaction has the Time Reversal
symmetry  then  the  transition  from  B  to  A (B→ A) can  also  occur  with  the  same
transition  amplitude  as  the  transition A→ B .  In  other  words  by  observing  and
measuring any of the two transitions one cannot draw conclusions about the direction of
time. Therefore, no experiment using this process can be designed which can detect
the direction of time. 

Having introduced Time Reversal we can proceed to study the invariance of the Dirac
equation under Time Reversal.

The Dirac Equation under Time Reversal

We will consider the Dirac equation in the case where an electron or a positron is coupled
to an electromagnetic field which is described by scalar potential Φ( x⃗ , t) and vector
potential A⃗( x⃗ , t) i.e Aμ

( x) = (Φ( x⃗ , t ) , A⃗( x⃗ , t )) .

                              [ i γμ (∂μ+ie Aμ( x⃗ , t))−m ]Ψ ( x) = 0 e<0

To study how this equation transforms under time reversal we need to write it in a non-
covariant form because the transformation under consideration involves only time.

i
∂Ψ ( x⃗ , t)

∂ t
= [α⃗⋅(−i ∇⃗−e A⃗( x⃗ , t))+m β+e Φ ]Ψ ( x⃗ , t) = H D Ψ ( x⃗ , t)  (1)

As seen here in the Dirac Hamiltonian we have replaced the space-time derivatives ∂μ

with  the  covariant  derivate Dμ = ∂ μ+i e Aμ .  This  substitution,  which  is  usually
called minimal coupling, will be justified in the next chapter when we discuss about local
gauge invariance.  

Next  we will  study the  conditions  under  which  equation  (1)  is  invariant  under  time
reversal.
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Lets define the time reversal operator acting on spinors as

                              Ψ ' ( x⃗ , t ') = G Ψ ( x⃗ , t) where t ' = −t                          (2)

From (1) and (2) we have that 

                            G i G−1 ∂Ψ ' ( x⃗ , t ' )
∂ t '

= −G H D G−1 Ψ ' ( x⃗ , t ')

If the Dirac equation is to remain invariant then it we should have either that
                             
                            GiG−1

= −i and G H D G−1
= H D

or
                            GiG−1

= i  and G H D G−1
= −H D

We can get a hint as to which one of the two choices should we follow by taking in to
account the expected change of the vector and scalar potentials under Time Reversal

         A⃗( x⃗ , t) = − A⃗ ' ( x⃗ ,−t) = − A⃗' ( x⃗ , t ' ) and Φ( x⃗ , t) = +Φ ' ( x⃗ ,−t )

This  expectation  is  justified  because  the  vector  potential  is  ultimately related  to  the
electric current which changes sign under Timer Reversal so we expect it to also change
sign whist the scalar potential is proportional to the charge which does not change under
Time Reversal.

Under  Time  Reversal ∇⃗=∇⃗ ' .  However,  we  wish  that  the  term  with  the ∇⃗
transforms  like  the  vector  potential  (with  a  minus).  So  there  must  be  a  complex
conjugation operation involved in this transformation. Therefore it seems that we need to
choose the first option where GiG−1

= −i . 

So lets try                                             
                               Ψ ' ( t ' )=T Ψ *

( t) ⇒ Ψ ( t )=(T−1Ψ ' ( t ' ))*             (3)

where T is a 4x4 matrix to be determined. For the rest of this study we suppress the
space arguments because they are not relevant here. 

From (1) and (3) we have then that

          i ∂
∂ t

[T−1Ψ ' ( t ' )]
*

= [ α⃗(−i ∇⃗−e A⃗( t))+eΦ+m β ] [T−1 Ψ ' ( t ' )]
*

⇒
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−i ∂
∂ t

[T −1 Ψ ' ( t ')] = [ α⃗*
(+i ∇⃗−e A⃗( t))+eΦ+m β* ] [T−1Ψ ' (t ')] ⇒

+i ∂
∂ t '

[T−1Ψ ' ( t ' )] = [α⃗*
(+i ∇⃗+e A⃗' ( t ' ))+eΦ+m β* ] [T−1Ψ ' (t ')] ⇒

+i ∂
∂ t '

Ψ '( t ' ) = [(T α⃗*T−1
)(+i ∇⃗+e A⃗' ( t ' ))+eΦ+m T β*T −1]Ψ ' ( t ') ⇒

+i ∂
∂ t '

Ψ '( t ' ) = [−(T α⃗* T−1
)(−i ∇⃗−e A⃗' ( t ' ))+eΦ+m T β*T −1 ]Ψ ' ( t ' )

So we want to find a matrix T such that 

          T i T−1
= i , −T α⃗*T−1

= α⃗   and T β*T −1
= β              (4)

Recall that 

α⃗ = (0 σ⃗
σ⃗ 0) and β = (1 0

0 −1) ⇒ (α1
)

*
=α1 , (α3

)
*
=α3 , (α2

)
*
=−α2 , β= β*

Then from (4) we have that

            [T , β ] = 0, [T ,α2
] = 0, { T ,α1 } = 0, {T ,α3 } = 0  (5)

The requirement [T , β ] = 0 can be satisfied only if T=a i a j i , j=1,2,3 whilst
the  requirement [T ,α2

] = 0 can be  satisfied  if  T=a1 a3 .  This  satisfies  also the
anti-commutator relations in (5)

Hence, we choose
                                                  T = i γ1γ3

Therefore,

                                        Ψ ' ( x⃗ , t ') = i γ1 γ3 Ψ *
( x⃗ , t)

Exercise: Show that

               [γ0 , γ1γ3 ] = 0, [α2 , γ1 γ3 ] = 0, { α1 ,γ1γ3} = 0, {α3 , γ1 γ3 } = 0
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Exercise: The spinor 

                                          ν L = √ E( 1
σ⃗⋅p̂) χ(2)e−ipx

describes a neutrino which is taken to be a massless spin ½ fermion with negative helicity
moving  in  the  positive  p̂ direction. p̂ is  the  unit  3-vector  at  direction  of  the
momentum,  σ⃗ are the Pauli  matrices,  p , x are the 4-momentum and 4-position

and  χ(2)
= (0

1) .   Apply  Time  Reversal  on  this  spinor  and  give  a  physical

interpretation for your result.

Solution:

(ν L)
T

= i γ1γ3(νL(− t))
*

= (−σ2 0
0 −σ2)√ E( 1

( σ⃗ )
*
⋅p̂) χ (2)e

i( p0
(−x0

)− p⃗⋅⃗x)
⇒

                        (ν L)
T

= √ E( 1
σ⃗⋅(− p̂)) χ(1)e

−i ( p0 x0
−(− p⃗⋅x⃗))

We observe that (ν L)
T represents a massless spin ½ fermion which has momentum and

spin opposite than ν L .  So it is a negative helicity spin ½ fermion moving 'backwards'. 

The result of this operation is shown pictorially in Fig. 1.

As seen here both σ⃗ and p⃗ have changed sign, so the result is still a negative helicity
spinor. However, the new spinor moves in the opposite direction than the original.
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The CPT Theorem

Parity, Charge Conjugation and Time Reversal are called  discrete symmetries because
the corresponding quantities can take discrete values (plus or minus one) as opposed for
example  to  translational  or  rotational  symmetries  which  are  continuous  and  can
translate/rotate  a  system  by  any  length/angle.  Continuous  symmetries  correspond  to
additive  quantum numbers (momentum,  angular momentum etc).  Discrete  symmetries
correspond to quantum numbers  that  are multiplicative  as we have already seen with
Parity and Charge Conjugation.

The CPT theorem states that all  Quantum Field Theories must be invariant under the
combined Charge Conjugation, Parity and Time Reversal transformations. This theorem
can be proven for free field theories subject to requirements that are very fundamental in
physics: Lorentz invariance, locality, and hermiticity. For interactive field theories it can
only be proven when additional caveats are assumed so it is accepted as an axiom. 

A  CPT  transformation  transforms  a  particle  of  a  given  mass,  energy  and
momentum to an antiparticle of the same mass, energy and momentum. 

Indeed the stringiest experimental test of this theorem today comes from measurements of
the difference of mass and width between the K 0 and K̄ 0 strange mesons.

                 2
∣mK 0−m K̄0∣
(mK0+mK 0)

< 6×10−19        2
∣Γ K 0−Γ K̄ 0∣
( Γ K0+Γ K 0)

= (8±8)×10−18

The CPT theorem dictates that the properties of matter should be the same as those of
anti-matter. For example the energy spectrum of Αnti-Ηydrogen atoms must be identical
to that from Hydrogen atoms.

The Dirac Equation under CPT

In this section we will study the invariance of the Dirac equation under the combined
transformation  of  Parity  (P),  Charge  Conjugation  (C),  and  Time  Reversal  (T)
transformations.  As we have seen the effect of a Parity, Charge Conjugation and Time
Reversal transformations on a solution of the Dirac equation is

                                          Ψ P
( x⃗ , t ) = γ0 Ψ (− x⃗ , t)

                                          Ψ C
( x⃗ , t ) = i γ2Ψ ( x⃗ , t)*

                                          Ψ T
( x⃗ , t) = i γ1γ3Ψ ( x⃗ ,−t )*
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Therefore the transformation under both P and C gives

                    Ψ CP
( x⃗ , t) = i γ2 [ γ0Ψ (− x⃗ , t )]

*
= i γ2 γ0 Ψ *

(− x⃗ , t )

and by applying next the Time Reversal transformation we obtain

   Ψ TCP
( x⃗ , t) = i γ1γ3 [ i γ2 γ0 Ψ *

(− x⃗ ,− t)]
*

= −γ1 γ3 γ2 γ0 Ψ (− x⃗ ,− t) ⇒           

       Ψ TCP
( x⃗ , t) = i γ5Ψ (− x⃗ ,−t) or simply Ψ TCP

(x ) = i γ5Ψ (−x ,)       (1)

It is easy to show that Ψ TCP
(x ) satisfies the Dirac equation. From (1) we have that

                Ψ ( x) = −i γ5Ψ TCP
(−x) = −i γ5 Ψ TCP

(x ') x ' = −x

and substituting this into the Dirac equation one gets

        (i γ μ
∂μ−m )Ψ ( x) = 0 ⇒ (i γμ

∂μ−m)(−i γ5
)Ψ TCP

( x ') = 0 ⇒

        (−i γ 5)(−i γμ∂μ−m)Ψ TCP(x ') = 0 ⇒ ( i γμ∂μ '−m )Ψ TCP( x ' ) = 0   

Hence, the Dirac equation is invariant under the TCP transformation.

                                   Ψ ( x) → Ψ TCP
( x) = iγ5Ψ (−x)

Next we would like to see what kind of physical particle does Ψ TCP
(x ) describe. We

will do this with the following exercise.

Exercise 1:   TCP transform Ψ (1) ,Ψ (2) which are free positive energy solutions of the
Dirac  equation  which  describe  spin  ½  fermions  with  positive  and  negative  helicity
respectively.

Solution: We have that

                                    Ψ (1,2) = √ E+M(
1

σ⃗⋅p⃗
E+M ) χ(1,2 )e−i px

 and using the TCP transformation from (1) we get
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      [Ψ (1)]
TCP

= i γ5 Ψ (1)
(−x ) = i √ E+M (

σ⃗⋅p⃗
E+M

1 ) χ (1) e+i px
= i υ(2)

( p⃗)e+i px
  (2)

        

      [Ψ (2)]
TCP

= i γ5 Ψ (2)
(−x) = i √ E+M (

σ⃗⋅⃗p
E+M

1 ) χ(2)e+i px
= i υ(1)

( p⃗)e+i px
 (3)

The results from (2) and (3) demonstrate that this operation acting on a spin ½ fermion
changed particle with antiparticle, while leaving mass, energy and momentum the
same. However, the TCP transformation flips the helicity of the fermion. This makes
sense since the momentum will change sign twice, once due to parity and once due to
time reversal, so it will not change sign under TCP, while the spin will change sign once
during  time  reversal.  Hence,  helicity changes  sign  under  TCP or  CPT (the  order  we
perform the three operations does not make a difference). In Table 1 we show how spin,
momentum and helicity change under the three different discrete transformations.

σ⃗ p̂ σ⃗⋅p̂

P +σ⃗ − p̂ −σ⃗⋅p̂

C +σ⃗ + p̂ +σ⃗⋅p̂

T −σ⃗ − p̂ +σ⃗⋅p̂

CPT −σ⃗ + p̂ −σ⃗⋅p̂

                                          Table 1: The  effect of discrete symmetries on Helicity. 

     
We see  that  Charge Conjugation and Time Reversal  do not  change helicity  but
Parity does.  Note that  in  Table 1 the values  for spin  and momentum in the case of
Charge Conjugation refer to the physical anti-particle and not to those of the negative
energy solution which are opposite.

Maxwell's Equations under CPT

In this section we will  study the invariance of the classical  Maxwell  equations  under parity,
charge conjugation and time reversal. The Maxwell equations in the CGS system of units are:

∇⃗⋅E⃗ ( x⃗ , t) = 4π ρ( x⃗ , t)   (1)      ∇⃗⋅B⃗ ( x⃗ , t) = 0                            (2)

∇⃗×E⃗ ( x⃗ , t) = −
1
c

∂ B⃗
∂ t

     (3)      ∇⃗×B⃗ ( x⃗ , t) =
4 π
c

J⃗ +
1
c

∂ E⃗
∂ t

 (4)
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As is well known, equation (2) implies that 

                                   B⃗ = ∇⃗× A⃗                                                  (5)

and equations (3)  and (5) give

                                E⃗ ( x⃗ , t ) = −∇⃗ Φ−
1
c

∂ A⃗
∂ t

                             (6)

Parity: First  we  consider  parity  transformations  under  which  the  coordinates  of  the
reference frame change according ( x⃗ , t)→( x⃗ ' , t ) where x⃗ ' = − x⃗ . Due to this the
charge and current densities as well as the fields change accordingly.
  
                      ρ( x⃗ , t )→ ρ'( x⃗ ' , t)    (7)  J⃗ ( x⃗ , t )→ J⃗ ' ( x⃗ ' , t)    (8)

                      E⃗ ( x⃗ , t )→ E⃗ ' ( x⃗ ' , t)   (9) B⃗( x⃗ , t )→ B⃗' ( x⃗ ' , t)   (10)

Next we need to investigate if there is such a transformation of the fields which leaves the
Maxwell equations invariant under parity. Since ( x⃗ , t) and ( x⃗ ' , t ) refer to the same
space-time point it is rather obvious that under parity we have that

                                  ρ( x⃗ , t ) = ρ' ( x⃗ ' , t ) = ρ' (− x⃗ , t)

This makes sense because why should the charge density change if we just relabel the
coordinates of a given point ?

Next we will transform Maxwell's equations to the primed system and by demanding that
they remain invariant we will study how the fields and the current density change to that
the equations remain invariant. Starting from (1) we have that

              −∇⃗ '⋅E⃗ ( x⃗ , t) = 4π ρ( x⃗ , t) = 4π ρ' ( x⃗ ' , t ) ⇒

              E⃗ ( x⃗ , t ) = −E⃗ ' ( x⃗ ' , t) ⇒ E⃗ ' ( x⃗ ' , t ) = −E⃗ ( x⃗ , t)          (11)

Also from (3) we have that

              ∇⃗ '×E⃗ ' ( x⃗ ' , t ) = −
∂ B⃗( x⃗ , t )

c ∂ t
⇒ B⃗' ( x⃗ ' , t ) = B⃗( x⃗ , t )  (12)
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Similarly (4) gives

                     −∇⃗ '× B⃗' ( x⃗ ' , t) =
4π
c

J⃗ ( x⃗ , t) −
∂ E⃗ ' ( x⃗ ' , t)

c∂ t
⇒

                                         J⃗ ' ( x⃗ ' , t) = −J⃗ ( x⃗ , t)                               (13)

In conclusion,  Maxwell's  equations  are  invariant  under  parity  provided  that  the
charge density is a scalar, the current density and the electric field are vectors and
the magnetic field is an axial vector. 

From (5) and (12) we conclude that under parity the vector potential transforms as

                                         A⃗' ( x⃗ ' , t) = − A⃗( x⃗ , t )                              (14)

in other words it is a polar vector, and from (6) , (11) and (14) we can conclude that 

                                         Φ' ( x⃗ ' , t) = Φ ( x⃗ , t)                                 (15)

in other words it is a scalar.

Charge Conjugation: Under charge conjugation all quantities change sign at any given
space time point. That is

     ρ' ( x⃗ , t) = −ρ ( x⃗ , t) , J⃗ ' ( x⃗ , t) = − J⃗ ( x⃗ , t) , E⃗ ' ( x⃗ , t) = −E⃗ ( x⃗ , t)

     B⃗ '( x⃗ , t) = −B⃗( x⃗ , t) , A⃗' ( x⃗ , t ) = − A⃗( x⃗ , t) , Φ' ( x⃗ , t ) = −Φ( x⃗ , t )

It  is  then  trivial  to  see  that  Maxwell's  equations  remain  invariant  under  charge
conjugation.

Time Reversal: Under time reversal the charge density remains invariant. If equation (1)
is to remain invariant then this means that

                                       E⃗ ' ( x⃗ ,−t) = E⃗ ( x⃗ , t)                                             (16)

By requiring that equation (3) remains invariant we arrive to the conclusion that

                                       B⃗ '( x⃗ ,−t) = −B⃗( x⃗ , t)                                           (17)
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Similarly, by requiring that equation (4) remains invariant we arrive to the current density
transformation
  

                                        J⃗ ' ( x⃗ ,−t) = − J⃗ ( x⃗ , t )                                         (18)

From equation (5) and (17) we get that

                                        A⃗' ( x⃗ ' ,−t) = − A⃗( x⃗ , t )                                       (19)

while from (6) and (19) we get that

                                        Φ' ( x⃗ ,−t ) = −Φ( x⃗ , t )

A summary of the results of this study is shown in Table 1.

          P          C        CP            T       CPT
ρ( x⃗ , t ) +ρ ( x⃗ , t) −ρ ( x⃗ , t) −ρ ( x⃗ , t ) +ρ ( x⃗ , t) −ρ ( x⃗ , t)

J⃗ ( x⃗ , t ) −J⃗ ( x⃗ , t) −J⃗ ( x⃗ , t) +J⃗ (− x⃗ , t) −J⃗ ( x⃗ , t) −J⃗ ( x⃗ , t)
E⃗ ( x⃗ , t ) −E⃗ ( x⃗ , t) −E⃗ ( x⃗ , t) +E⃗ ( x⃗ , t) +E⃗ ( x⃗ , t) +E⃗ ( x⃗ , t)
B⃗( x⃗ , t ) +B⃗( x⃗ , t) −B⃗( x⃗ , t) −B⃗( x⃗ , t ) −B⃗( x⃗ , t ) +B⃗( x⃗ , t)
Φ( x⃗ , t) +Φ ( x⃗ , t) −Φ ( x⃗ , t) −Φ ( x⃗ , t) +Φ ( x⃗ , t) −Φ ( x⃗ ,−t)
A⃗( x⃗ , t) − A⃗( x⃗ , t) − A⃗( x⃗ , t) + A⃗( x⃗ , t) − A⃗( x⃗ , t) − A⃗( x⃗ , t)

           Table 2: Chance of the quantities involved in Maxwell's equation under P, C, T, CP and CPT.

Hence, the equations of Maxwell are invariant under the combined CPT transformations.
This is achieved by transforming the fields and current density as follows

                            F μν
( xα

)→ F ' μν
( x 'α

) =F 'μν
(−xα

) = F μν
(xα

)   

                            Αμ
( xα

)→ Α' μ
(x 'α

) = Α 'μ
(−xα

) = −Αμ
( xα

)

                            J μ
( xα

)→ J ' μ
( x 'α

) = J ' μ
(−xα

) = −J μ
( xα

)
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Searches for a non-vanishing Electric Dipole Moment of the
Neutron (nEDM)

It  is  already well  known that  elementary spin  ½ fermions  exhibit  a  magnetic  dipole
moment and their interaction  with a magnetic field via the dipole moment is described by

                                             H int = −μ σ⃗⋅B⃗                                  (20)

where  μ is the magnetic moment, σ⃗ is the spin and B⃗ is the magnetic field1.  As
we have seen, under Time Reversal both σ⃗ and B⃗ change signs. Hence, the above
interaction term remains invariant under Time Reversal. Similarly under Parity both σ⃗
and B⃗ do not change sign  (they are both axial vectors).  Hence, the magnetic dipole
interaction term is invariant under both Parity and Time Reversal.

Lets  consider  the  possibility  that  a  spin  ½  fermion  exhibits  also  an  electric  dipole
moment. The spin of an elementary spin ½  fermion defines the only direction available
in  the  reference  frame  of  the  fermion.  Hence,  the  electric  dipole  moment,  which
transforms as a vector under rotations must be aligned with the spin and should point
either to the direction of the spin or at the opposite direction. In other words

                                                      d⃗ = d
σ⃗
∣⃗σ∣

                                 (21)

where d is  the hypothetical EDM of the fermion (the magnitude).  If d is  different
than zero then the fermion can interact with an electric field via an interaction term of the
form
                                                  H int = −d σ⃗⋅E⃗                              (22)

Under Time Reversal the spin changes sign. However, the electric field does not change
sign  under  Time  Reversal.  Hence,  such  term  is  not  invariant  under  Time  Reversal.
Similarly  under  Parity  the  spin  does  not  change  sign  (axial  vector)  but  the
electromagnetic field does change sign (polar vector).  Therefore, a non-zero electric
dipole moment would cause both Parity and Time reversal to be violated.

There is another way of viewing this which is described in Figure 2.  There it is shown
how the spin and EDM transform under Parity and Time Reversal. In both cases we start
from a fermion whose EDM is at the spin direction and we end up with a fermion whose
dipole moment points opposite to the spin. If Time Reversal and Parity were conserved
both types of particle should exist in nature. 

1 See Homework Assignment 7.
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In other words, if an elementary spin ½ fermion has a non-vanishing EDM and Parity and
Time Reversal are good symmetries, then this fermion state should exist in nature in two
degenerate states, one with the EDM at the direction to its spin and one which is opposite.
It is clear that this is not the case. Hence, a discovery of a an elementary particle with
non-zero EDM will be a clear sign that both Parity and Time Reversal are violated.

In conclusion, a non-vanishing EDM implies Parity and Time Reversal symmetry
violation if the system has a non-degenerate ground state.  As the reader may have
noticed the origin of this violation is at the quantum level the relation (21) which
forces the dipole moment, a polar vector, to transform like the spin which is an axial
vector and this can be corrected only if the ground state is degenerate. 

There are in nature molecules  such as the H2O or NH3   which exhibit  electric dipole
moments. However, those do have degenerate ground states. Hence, their non zero EDM
does not imply violation of either Parity or Time Reversal symmetries.

Charge Parity Symmetry Violation in Particle Physics

The  reader  is  probably wondering  by now  why the  Time  Reversal  symmetry  or  its
violation are so important. The reason is that if the Time Reversal Symmetry is violated,
one concludes, using the CPT theorem, that also the CP symmetry is violated and the CP 
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Figure 2: Transformation of the spin and EDM of a spin 1/2 fermion under Parity and Time Reversal.
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symmetry is intimately related to the question of the Baryon-Antibaryon Asymmetry in
the  Universe  (BAU).  In  other  words  why  our  universe  is  made  of  matter  and  not
antimatter given that during the Big Bang matter and antimatter must have been created
in equal amounts. A. D. Sakharov, in a seminal publication in 1967, set three conditions
which if satisfied can explain the  BAU2 . These were 

1. Non-Conservation of the baryon number
2. CP violation
3. Non-thermodynamic equilibrium

Hence, establishing sources of CP violation will bring us closer to answering one of the
most fundamental questions in physics today which is the BAU.

The Standard Model of particle physic includes two sources of CP violation: 

The first comes from the Cabbibo-Kobayashi-Maskawa (CKM) matrix which determines
the quark mixing and includes a phase δ which is non-zero and has as consequence that
CP is violated.  This sector of the Standard Model has been confirmed experimentally
using both K 0

/ K̄ 0 and B0
/ B̄0 data3. 

The second has its  origin in  the strong interaction sector.  Quantum Chromodynamics
(QCD), which is the theory of the strong interactions, and is part of the Standard Model,

includes a term which is given by LQCD
CPV

=
g s

2

32 π2 θ̄ G μν , aG̃ μν , a where θ̄ is a phase, g s is

the  strong  coupling  constant  and G μν , a ,  G̃ μν , a are  the  gluon  tensor  and  its  dual4.
G μν , aG̃ μν ,a violates both Parity and Time Reversal symmetries5. So QCD predicts CP

violation.  However,  despite  all  searches  today,  there  has  not  been  any experimental
evidence that there are CP violating processes  in strong interactions.

If one, using the CP phenomenoloy of the Standard Model, tries to predict the BAU, the
result  is a number which is  eight orders of magnitude less than the number for BAU
obtained  from  measurements  of  the  cosmic  microwave  background  radiation  or
measurements  of  the  abundance  of  light  elements  produced  in  primordial
nucleosynthesis6. 

2 Andrej Sakharov (1967) Pisma Zh. Eksp. Teor. Fiz. 5 32; 1967 JETP Lett. 52 4; 1991 Sov. Phys.—Usp.
34 392; 1991 Usp. Fiz. Nauk 161 61

3 Add here some references from Kaon and B-meson experiments.
4 These are similar to the F μν and F̃ μν Maxwell tensors of electromagnetism.
5 In Homework 11 a similar but simpler term is shown to violate Parity and Time Reversal symmetries.
6    A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999); M. Dine and A. Kusenko, Rev.   
     Mod. Phys. 76, 1 (2003); R. H. Cyburt, B. D. Fields, and K. A. Olive, Cosmology Astropart. Phys. 11, 
     12 (2008) .
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In other  words  we don't  have an adequate  theory that  explains  what  happened to  all
antiparticles  that  must  have  been  produced when  the  universe  was  created.  The CP
violation  processes  in  the  Standard  Model,  allthough  are  in  agreement  with
experimental  data,  cannot  explain  the  BAU.  So  there  may be  other,  yet  unkown,
sources of CP violation. This is why it is important to investigate the question whether
the neutron has a non vanishing EDM.

Estimates and Predictions of the Neutron Electric Dipole Moment

One can try to make some crude estimates of the magnitude of the nEDM.  The most
crude try would be to assume that the nEDM is the result of two opposite charges whose
magnitude  is  equal  to  the  magnitude  of  the  electron  charge  and  are  positioned  at  a
distance of 1 fm (approximately the size of a neutron). This would give an estimate of the
order of
                                                   d n∼10−13 ecm

We can do perhaps better than this if we assume that a possible non-zero nEDM is due to
to the well established CP violation of the Weak Interaction. The coupling constat of the
weak interaction has units of inverse-mass-square, GeV−2 , which is the same as length-
square and is given by

                                             GF∼
g2

M w
2

=
4παQED

M w
2

where αQED≈1/137 is  the  coupling  constant  of  the  Electromagnetic  interaction  and
M w≈80GeV , the mass of the W-boson7, the propagator of the charged current Weak

Interaction.  To estimate the nEDM we need somehow to derive a fundamental length
from GF which means that we have to multiply it  with something that  has units  of
mass.  The only mass  involved here is  the neutron mass  so we multiply the coupling
constant with the mass of the neutron and finally we get 

                            GF×mn∼
4παQED

M w
2

×mn = 1.4×10−5GeV −1
≈10−19 cm

However,  we  know  from  Kaon  data  that  the  CP  violating  processes  of  the  Weak
interaction are further suppressed by another factor of f ∼10−3 . Hence, we have that

7Here the assumption is that at very high energies (unification scale) the Weak and the Electromagnetic
Interactions have the same strength but at lower energies, due to spontaneous symmetry breaking, the Weak
interaction propagators acquire mass which  the reason that the Weak interaction is suppressed relative to
the Electromagnetic interaction.
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                         d n∼GF×mn× f ∼
4παQED

M w
2

×mn× f ≈10−22 cm

So our expectation is that the neutron EDM is incredibly small and as we will see later
these estimates overestimate EDM by at least another four orders of magnitude. 

Standard Model calculations at the 3d loop level (one and two loop calculations give null
result  for  nEDM)  based  on  the  Kobayashi-Maskawa  sector  predict  an  even  smaller
nEDM8. 
                                              d n

KM
∼10−32 e cm  

From the CP violating sector of QCD one calculates that

                                               d n
QCD

∼θ̄×10−16 e cm

Taking  in  to  account  the  current  upper  limit  for  the  value  of  nEDM  which  is
d n∼10−26ecm this means that 

                                                 θ̄ < 10−10

This is a surprising result and it is not yet known why θ̄ must be that close to zero since
it is a phase and in principle could take any value between 0 and 2π. This is called the
Strong CP Problem which can be solved by postulating the existence  of  spin zero
particles called Axions.  Although no Axions have ever been found searches for them
continue.  If  they  exist,  except  for  solving  the  Strong  CP  problem,  they  are  also  a
candidate for the missing dark matter of the universe.

Theories which are beyond the Standard Model predict a nEDM which is in the range
between 10−17

−10−28ecm . For example a prediction from Super Symmetry gives

                                    d n∼(300
GeV
ΛSUSY

)
2

×sin(φCP)×10−24 e cm

where ΛSUSY is the SUSY scale in GeV and φCP is a CP violating phase of SUSY.

8 Pospelov and Ritz, Ann. Phys. 318, 119, (2005)
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Measurements of nEDM 

The fact that the predicted nEDM is so small poses serious challenge for experiments
that endeavor to measure nEDM. Measurements of magnetic or electric dipole moments
are usually done by measuring precession frequency of the magnetic or electric moment
in a magnetic or electric field respectively as one can see from (20) and (22). However,
due to the fact that the nEDM is so small one needs a very strong Electric field, of the
order of 10 KV, and even then the precession frequency will be of the order of nHz9. For
example assuming the current upper limit of the nEDM which is d n∼10−26ecm and for
an electric field equal to 15 KV the nEDM would precess and complete about two turns a
year10. Even worse any small magnetic field of the order of fT leaking in the measurement
region would cause the neuron, which has a magnetic moment, to precess with a similar
frequency and thus fake the effect.   

Experimenters have found a way to overcome these problems. As shown in Fig. 3 a fixed
magnetic field B⃗ is introduced along with the electric field E⃗ and measurements of
the precession angular frequency, ω, are made both with the electric field pointing at the
direction of the magnetic field as well as pointing at the opposite direction. The magnetic
field  allows the neutron to  precess  with a  higher  and thus  measurable  frequency.  As
shown in Fig. 2 if the neutron has a non-zero EDM the difference between the energy
levels when the electric field points to the direction of the magnetic field (left) should be
larger than when it points to the opposite direction (right).

9 P. Schmidt-Wellenburg, The quest for an electric dipole moment of the neutron, 
https://arxiv.org/abs/1602.01997

10 Guillaume Pignol, Philipp Schmidt-Wellenburg,The search for the neutron electric dipole moment at 
PSI, https://arxiv.org/abs/2103.01898
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Figure 3: Energy levels of a spin ½ fremion with a magnetic dipole moment and 
a hypothetical electric dipole moment. Measurements of nEDM use both a strong
electric field and a magnetic field. Measurements are taken with the electric filed
pointing at the direction of the magnetic field (left) and opposite to it (right).
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The angular precession frequencies corresponding to the energy levels shown at the left
and right of Fig. 3 are

                                    ℏ ω↑ ↑ = 2∣μn B↑ ↑+d n E↑ ↑∣  

                                    ℏ ω↑ ↓ = 2∣μn B↑ ↓−d n E↑ ↓∣

By taking the difference between the angular frequency when the electric field points at
the direction  of the magnetic  field with the angular frequency when the electric  field
points at the opposite direction the effect of the magnetic dipole moment cancels and one
can measure nEDM.

                                   d n =
ℏ(ω↑ ↑−ω↑ ↓ )−2 μn(B↑ ↑−B↑ ↓)

2 (E↑ ↑−E↑ ↓ )
 

and given that E↑ ↓ = −E ↑ ↑ = −E0 and B↑ ↓ = B↑ ↑ we have that

                                                  d n =
ℏ(ω↑ ↑−ω↑ ↓ )

4E 0

So the problem of measuring nEDM is reduced to measuring the angular frequencies for
the two configurations. The method for this was originally developed by N. F. Ramsey of
Harvard11 and the results from the experiment based on this method were published in
195712. The apparatus of this experiment is shown in Figure 4. 

11 N. F. Ramsey, Phys. Rev. 78, 695, (1950).
12 J. H. Smith, E. M. Purcell, N. F. Ramsey, Phys. Rev. 108, 120 (1957).
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Figure 4: Apparatus for measuring nEDM. A the magnetized iron 
mirror polarizer, A' the magnetized iron analyzer A', D the neutron 
detector. A uniform magnetic field is applied at B and  each of the 
coils C and C' flip the neutron spin by π/2.
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In Figure 5 the procedure of measuring nEDM using this apparatus is illustrated.

Neutrons with a Maxwellian velocity distribution corresponding to 500 K0  produced by a
reactor enter from the left and exit the polarizer with a specific polarization. Then they
enter the precession region where a magnetic field B and an strong electric field E are
applied and there their spins precess with an angular frequency ωL . At the entrance and
exist of the precession region an RF magnetic field BRF perpendicular to B causes the
neutron spin to flip by π/2.  This spin-flip occurs only if the RF angular frequency ωRF

is equal to the precession angular frequency ωL . The beam exists the precession region
and enters the analyzer which selects neutrons whose polarization is opposite to the initial
polarization. Neutrons existing the analyzer are counted by the neutron detector. Hence,
the analyzer and the neutron detector essentially detect that the spin flip by π has occurred
and this means that the externally supplied ωRF = ωL and this way ωL is measured.

The readers will find it perhaps interesting to discuss how the polarizer and the analyser
select neutrons of a specific polarization. As is known from basic Quantum Mechanics
moving neutrons can be described as de Broglie waves with wavelength λ=h/ p and
when the cross media boundaries they undergo refraction just as the light waves. The
index of refraction for neutrons entering from vacuum to a material is given by

                                               √ 1−
λ2 Ν αcoh

π
±

μΜ B

1
2

M nυ2
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Figure  5:  Neutron beam and the polarizer are shown at the left. The precession region with electric and
magentic fileds E, B is shown at the center. The analyzer and the neutron detector are shown at right.
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where λ  is  the neutron wavelength,  N is  the number  of  Nuclei  per cubic centimeter,
αcoh is the neutron forward scattering length, μM the neutron magnetic moment and

B is  the  magnetic  field.  The sign ± refers  to  the  orientation  of  the  magnetic  field
relative to the magnetic moment of the neutron13.

As it happens in optics neutron waves can undergo total reflection if the glancing angle θ
is given by

                                                       cosθc = n

Hence,  by appropriate  choice  of  the  material  and  the  magnetic  filed  one  can  cause
neutrons of a certain polarization to undergo total  reflection.  Hence, the neutrons that
penetrate the magnetized material will have a specific polarization. The analyzer works
exactly the same way. 

The experiment found that the nEDM is equal to

                                           d n = (−0.1±2.4)×10−20 e cm

and from this they concluded that the nEDM must be 

                                            d n < 5 × 10−20e cm

The resolution to these measurements is given by

                                            σ (dn) =
ℏ

2α T E √ N

where N is the number of neutrons, T is the precession time, E is the electric field and α is
a constant called fringe visibility and depends upon the neutron polarization and the 
analyzing power of the final neutron detector14 .

As seen here, to make a precise measurement one need a long precession time and a large
number of neutrons (experimental limitations do not allow to increase the Electric field
significantly). Neutron beam experiments had short T and typically not a large number of
neutrons so a way had to be found to collect a large number of neutrons and keep them
for along time until they decay. This lead to the use of  Ultra Cold Neutrons (UCN).
These are neutrons with a velocity 
                                                          υ∼6m / s

13 N. F. Ramsey, Electric Dipole Moment of the Neutron, Annu. Rev. Nucl. Part. Sci. 1990. 40: 1-14
14 P. Schmidt-Wellenburg, The quest for an electric dipole moment of the neutron, 

https://arxiv.org/abs/1602.01997
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which corresponds to a de Broglie wavelength and a temperature

                                           λ = 0.066 μm  T≈2.2mK o

respectively. Such UCN undergo total reflection at arbitrary glancing angle so they can be
put in a 'bottle'  and kept there to precess until  they decay. Such experiments increase
markedly the precession time and are thus more accurate than beam experiments.

The most recent measurement using UCNs comes from the experiment at Paul Scherrer
Institute (PSI) in Villingen in Switzerland15. A diagram of the  experimental apparatus is
shown in Figure 6. UCN enter at bottom-left and are polarized by a 5T magnet and a spin
flipper. 

15 C. Abel et al., Phys. Rev. Lett. 124, 081803, (2020)
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Figure 6:  The PCI experiment. The 5 Tesla magnet and the spin flipper is shown at the bottom left. 
Further to the right is the switch with directs the UCNs either to the precession chamber (center) or the 
the neutron detectors (bottom).
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The switch directs the neutrons to the cylindrical precession chamber (Radius R = 23.5
cm, Height H = 12cm). After a density of 2 UCN/cm3 has been reached the UCN shutter
at  the bottom of the chamber is  shut.  The  UCN in the chamber are subjected to an
electric field equal to E = 11kV/cm and a collinear magnetic field equal to B = 1036nT.
The UCNs are allowed to precess for 180 s and Ramsey's method was used to measure
the precession angular frequency. At the end the shutter is opened and the switch directs
the UCNs to the spin analyzers which measure both spin states. This way the neutron
asymmetry 

                                                  A =
N ↑−N ↓

N ↑+N ↓

was  measured  for  each  time  (cycle)  that  the  chamber  was  filled  with  UCN,  where
N ↑ ,N ↓ are the numbers of neutrons with spin 'up' and 'down' respectively. In total

54068  such  measurements  were  made  each  having  on  average  11400  UCNs.  The
measured nEDM was found to be 

                                d n = (0.0 ± 1.1stat ± 0.2syst)×10−26 ecm

which is consistent with a zero nEDM. As seen here the measurement is statistics limited.
This result was interpreted to mean that if there is a non-vanishing nEDM then it must be,
with 90% probability,

                                              d n < 1.8×10−26 e cm        

and this constitutes the best limit today for nEDM.

New experiments are being constructed which aim to reach the sensitivity to observe  an
nEDM or set a limit  at the level of  10−27ecm which would make them sensitive to
SUSY  models.  For  example,  the  TRIUMF Ultra-Cold  Advanced  Neutron  (TUCAN)
collaboration  has  designed  an  experiment  which  will  increase  the  UCN  density  to
approximately 250 UCN/cm3 or  106 per cycle and this, they claim, it will allow them to
reach a sensitivity of 10−27ecm in approximately 400 days16. Hence, not very long after
the experiment starts collecting data, it will be sensitive to Physics Beyond the Standard
Model.     

16 R. Matsumiya et al, The Precision nEDM Measurement with UltraCold Neutrons at TRIUMF, arXiv: 
2207.09880v1, physics.ins-det, 19 Jul 2022.
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