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Charge Conjugation and Anti-Particles       
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We still have not confronted the issue of what to do with the negative energy solutions of
the Dirac equation. These solutions, as we have seen, correspond to positive probability.
Therefore  one  is  entitled  to  ask  why  are  they  there  and  if  they  actually  represent
something. Surely we cannot just ignore them. They are part of the Hilbert space defined
by the eigenfunctions of the Dirac Hamiltonian and any spin-half fermion state can be
expressed as a superposition  of these eigenfunctions.  Furthermore,  shortly after Dirac
published his equation, J. R. Oppenheimer computed the decay rate for particles in the
positive energy levels to decay to negative energy levels and the rate was quite high. This
means  that  all  particles  occupying  the  positive  energy solutions  could  decay to  the
negative  energy  solutions  very  fast.  Since  the  negative  energy  solutions  extend  to
negative infinity, the same away as the positive solutions extend to positive infinity, it
means that our world, us included, would decay rather fast to oblivion1. This clearly just
does not happen. Hence, Dirac’s theory had a serious problem. Another problem can be
seen by using the formula for relativistic energy: 

                                                 E=±√ P2+M 2

If the energy is negative one comes to the conclusion that the more the particle decays and
loses energy the higher its momentum becomes, which is of course nonsenses2. 

Dirac tried to solve these problems by proposing his Hole Theory.  He claimed that the
negative  energy  levels  must  be  fully  occupied  by  electrons  which  have  negative
energy.  Electrons  are  identical  spin-half  fermions.  According  to  Pauli’s  exclusion
principle only two electrons can possibly occupy a single energy state, one with spin up
and the second with spin down. Adding a third electron would force it to have the same
quantum numbers  as  one of  the two already there and this  is  not  allowed by Pauli's
exclusion principle. 

Hence,  Dirac's  claim  explained  the  absence  of  decays  from the  positive  to  negative
energy states and allowed  him to make some predictions:

1 In a model with just fermions this would not happen. However, as soon as one includes photons in the 
theory which couple to electrons, the electrons can emit photons and decay.

2 Theorists are more tactful and call these run-away solutions.
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I. When a photon strikes a negative energy energy spin-up electron as seen in Fig. 1 (left)
it gives it some energy and excites it to a positive energy state. The negative energy
level,  where the electron previously was, is left  unoccupied and this  is what Dirac
referred to as hole.  This hole represents the absence of a negative energy negative
charge  spin-up  object.  Hence,  the  hole  behaves  as  a  positive  energy,  positive
charge,  spin-down  particle.  This  is  the  equivalent  of  the  electron-positron  pair
creation process. This way Dirac predicted that  for very known charged spin-half
fermion there must exist another spin-half fermion of opposite charge which is
represented by a hole. One can generalize this argument to read that for every spin-
half  fermion  we  need  another  spin-half  fermion  with  opposite  quantum  numbers.
These, hypothetical at the time, particles were called anti-particles. 

II. Alternatively if a positive energy electron decays to an unoccupied negative energy
level by emitting a photon and fills in a hole as shown in Fig. 1 (right) this represents
the process of an electron positron pair annihilation to a photon.

III.Since particle and anti-particle are solutions of the same Dirac equation they must have
the same mass.

   

Figure 1: Pair Creation (left) and pair annihilation (right ) processes according to Dirac’s Hole Theory.

Summary of Dirac Hole Theory:

I. All negative energy levels predicted by the Dirac equation are fully occupied and no 
particle can decay to them.

II. Only positive energy particles exist in nature and these are either positive energy 
electrons or positive energy holes.
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III.For every positive energy particle in nature we have a positive energy anti-particle, 
described by the a Hole, which is of equal mass and opposite quantum numbers.

The Discovery of the Positron:

It  was  not  long  after  Dirac  proposed his  Hole  Theory that  Anderson3 at  CALTECH
discovered the positron using a cloud chamber. The cloud chamber was immersed in a
magentic field to enable momentum measurements and was instrumented with a  6 mm
lead sheet to identify the direction of the charge particle tracks. In 1300 exposures of his
cloud chamber he found 15 tracks corresponding to positively charged particles and the
question was what were these particles. Where they protons (the only positively charged
particle known at the time) or were they some kind of a new particle which had not seen
before ?

One of C. Anderson's  positron tracks is shown in Fig. 2. The upper part of the track has
evidently less momentum than the lower part because it bends more in the magnetic field
of the chamber.  Hence, the particle in the picture is moving upwards because one would
expect it to lose energy as it goes through the 6 mm lead sheet which is the reason that
the lead sheet was put there in the fist place. The magnitude and direction of the magnetic
field was experimentally controlled. Hence, once the direction of the particle was known
Anderson  could  easily  conclude  that  it  was  a  positively  charged  particle  and  could
compute the momenta before entering the lead sheet and after exiting it. 

The  obvious  question  Anderson  had to  answer  first  was  whether  this  particle  was  a
proton. One can test this hypothesis using the theory of energy loss due to ionization. The
idea is that if we can measure the momentum, which we can, then we can convert this to
velocity by assuming the particle mass. If we know the velocity then we know the energy
loss per unit length due to ionization and we can tell how far the particle should travel
before it stops.  

Using Andreson's picture and a ruler one can measure distances on the picture and can
convert them to path-lengths in centimeters because it is given that the lead-sheet is 6mm
thick.  This way we can measure the radius of the upper track and from this to get a
measure for the track momentum. Here is the calculation: The radius of the upper track is
R = 0.05 m and the magnetic field was B = 15000 Gauss. Hence, assuming that we are
dealing  with  a  proton  which  has  a  unit  charge we  arrive  to  the  conclusion  that  the
momentum of the upper part of the track is: 

    p0(GeV /c ) = 0.3×B[Tesla]×R [meters] = 0.3×1.5×0.05GeV ≈ 23 MeV / c

3 C. Anderson, Phys. Rev. 43, p491, March 1933.
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Figure  2: A positron event as seen in Andreson’s cloud chamber. The magnetic field
points into the picture and the particle moves upwards because the upper track has less
momentum than the lower part due to loses suffered in the 6 mm lead plate shown in the
middle of the picture.

A proton with this momentum will be highly ionizing because it will have:

                                         βγ =
23 MeV
938 MeV

= 24×10 -3

For this value of βγ the ionization plot in Lecture 4 gives 
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                                          dE
dx

≈ 200
MeV cm2

g
 

which using the air density d = 1.2 10- 3 g /cm3  can be converted to:

                                           
dE
dx

≈ 240
KeV
cm

Using the track momentum one can estimate the kinetic energy of the hypothetical proton
and find that it is  KE = 282 KeV. This can be computed using also the non-relativistic
formula because protons at these momenta are slow. Anderson estimated it to be 300 KeV
which is not very far from our value. Hence, such a proton could not travel more than

                                           L ≈
282
240

cm = 1.2cm

Anderson in his  paper claims this  range to be  0.5 cm derived from data at  the same
energy range4 which is more than a factor of two smaller than the figure above and most
likely closer to the truth than our rough estimate. However, it does not matter because a
close look at the picture shows that the track length is at least 5 cm and this is only the
visible part of it since the particle exits the chamber at the end. Hence, the energy loss of
this particle is not consistent with that of a proton. The track is not a proton track.
This particle must be faster than a proton because because its ionization energy loss is
consistent with a particle of smaller mass which would make βγ larger and result to lower
ionization energy loss. Hence, the mass, m, of the unknown particle must be smaller than
a proton and its charge, z, must be below a certain value otherwise the ionization energy
loss will be too large.

The posibility that this was in fact a chance coincidence two different tracks was also
ruled out based on probability grounds. Tracks of such momentum were observed at a
rate  of  1/500.  Hence,  the  probability of  observing two such tracks  would  have been
(1/500)2 times the probability that the two independent tracks started from the same space
point which is negligible.

Next, Anderson compared roughly the ioniation loss of the track (droplet density) and
with the ionization loss from electrons of similar momentum. He found that the track was
losing energy via ionization at a rate which was  less than four times that of an electron
track at similar energy:

4 Rutherford, Chadwick and Ellis, Radiations from radioactive Substances, p294.
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                                             (
dE
dx

)
track

< 4 × (
dE
dx

)
e -

Since the ionization energy loss depends upon the square of the charge of the incident
particle 

                                                          
dE
dx

∼
z2

β 2

he concluded that the charge of  the observed particle  must be less  than twice he
absolute value of the charge of the electron and most probably equal to that of the
electron5. 

Anderson also checked if the energy loss in the lead sheet is consistent with that of the
electron:   The radiation  length in  lead  is X 0 = 5.6mm and the momentum of  the
particle below (assuming unit charge) is 63 MeV which can be computed from the track
curvature (or read off from Anderson's paper). Hence we expect that the particle above
will have a momentum equal to:

E (upper ) = E ( lower)e
−

6mm
5.6 mm

= 0.343×63 MeV = 21.6 MeV

which is rather close to the measured value of 23 MeV. Hence, the particle loses energy
like a electron. From this we also conclude that the upper and lower tracks belong to the
same particle and are not two different tracks which happened to pass from the same
point which was excluded also from probability arguments.

Alternatively, if one assumed that the particle had unit charge, one could calculate the
exected energy loss due to ionization using the momentum measurement for different
assumptions about the mass of the particle. Anderson compared the different predictions
for dE/dx, each for a different particle mass, with the measured energy loss of the track.
However, this track exhibited very low energy loss due to ionization and this resulted
only to an upper limit for the mass of the new particle of 20 times the mass of an
electron.

5 Anderson was somewhat lucky that back then people knew only 3 elementary particles, the proton, the
neutron and the electron. So anything positively charged  and lighter than the proton must have been a
discovered new particle. Today, or even a couple of decades later he would have had more choices to
make and it is not clear that he would have made the correct one using this apparatus.
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Hence, Anderson claimed discovery of a new particle of positive charge which had a
mass which was less than twenty times the mass of the electron. He got the Nobel price
for this in 1936. P. Blackett and G. Occhialini confirmed Anderson's results in the Spring
of  1933.  They used  their  well  known technique  of  a  cloud  chamber  triggered  using
Geiger-Miller counters and made many pictures of positrons.

                               Final Comment on Dirac's Hole Theory:

Dirac's theory was radical at its time not only because it predicted the antiparticles6 but
also because it introduced, for first time in particle physics, mechanisms for creation and
annihilation of particles. Hence, Dirac introduced this way the first ideas for a Relativistic
Quantum Field Theory. Starting at about this time along with Dirac, Pauli, Heisenberg
and  others  developed  Relativistic  Quantum Field  Theories  in  an  attempt  to  describe
processes  involing particle  scattering and particle  creation  and annihilation.  The final
triumph  of  Reletivistic  Quantum Field  Theories  was  the  Standard  Model  of  Particle
Physics  developed  by  S.  Weinberg  (Harvard),  A.  Salam  (Imperial  College),  ans  S.
Glashaw (Harvard).

As it always happens in physics, despite its success in predicting the anti-particles, Dirac's
Hole theory looked most unnatural. It is hard to believe that half of the world is made of
an infinite number of fermions whose only job is to occupy the negative energy levels so
no particle can decay into them.  Even if one is willing to accept this there is another
argument against it: Bosons also have antiparticles and the Hole theory does not apply to
them because it  is  based on the  Pauli  exclusion  principle  which bosons do no obey.
Hence, we cannot explain using the Hole theory why charged pions should come in pairs
of opposite charge or how they are created or annihilated. Clearly we need a theory of
antiparticles which applies equally well for both bosons and fermions.

Constructing Positron Spinors 

In this section we shall give heuristic arguments for constructing positron spinors and
thus  give  an  alternative  interpretation  to  the  negative  energy solutions  of  the  Dirac
equation which is very different than Dirac's Hole Theory. This interpretation is due to
Stückelberg (1941) and Feynman (1948) and has the advantage that it applies to fermions 

6 These days we have another radical theory, the Supersymmetry (SUSY) which predicts that for every 
known fermion there is a bosonic partner with which has a spin which is only half a unit different than 
the original particle. Several searches at the LHC for SUSY particles have provided so far no evidence 
for their existence and many physicists believe that evidence for SUSY will never be found. In this sense
Dirac was fortunate to have experimental evidence for his predictions about a year after he published 
which unfortunately is not the case for the SUSY predictions.
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as well as bosons. Lets start from the positive energy electron solutions which we derived
before

  

Ψ ( s)
( x) = √(E+M )(

1
σ⃗⋅p⃗

E+m ) χ se−ip x s=1, 2, χ 1
= (1

0) χ 2
= (0

1)

and compute the corresponding electron current which as we have seen in Lecture 6 is

      J EM
μ (e-) = −eΨ̄ (s)γ μ Ψ(s) = −2 e P μ    with     e>0, P μ

=(Ε ; P⃗ ) , E>0

Consider now a positron e+ which is a particle  with the same mass and spin as the
electron  but  has  charge  opposite  to  that  of  the  electron.  The  positron  must  also  be
described by a positive energy solution of the Dirac equation and we can write down the
positron current as

     J EM
μ

(e+
) = +eΨ̄ γμ Ψ = +2e P μ again with e>0, P μ

= (Ε ; P⃗) , E>0

where Ψ is the spinor that describes the positron which we will construct later in this 
lecture. Notice that this current can be written as 

                                      J EM
μ

(e+
) = +2e P μ

= −2e (−P μ
)                                (10.1)

which represents an electron current with negative energy an momentum (−E ;− p⃗) .
The  interpretation  of  this  is  that  negative  energy  electron  solutions  of  the  Dirac
equation describe positive energy positron solutions. 

This can be verified, as shown in Lecture 6, by substituting the negative energy electron
solutions 

                Ψ ( s+2)
( x) = √(∣E∣+m)(

σ⃗⋅p⃗
E−m

1 ) χ(s)e−ip x E<0, s=1,2

into       
  
 J μ(e+) = +eΨ̄ ( s+2)γμ Ψ (s+2) = −2e P μ = 2e (−E ;− p⃗) = 2e (∣E∣;− p⃗)      (10.2)
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This 4-vector has positive energy as it should because it  describes a physical particle.
However, the momentum is inverted. Finally by comparing 10.1 with 10.2  we arrive at
the conclusion that indeed we can use negative energy solutions to describe a positron
provided that we substitute p⃗→− p⃗ and E →−E .

Furthermore,  this  can also be demonstrated explicitly starting from from the negative
energy solutions and re-expressing them as follows:

                             Ψ ( s+2)
( x) = √(∣E∣+m)(

σ⃗⋅p⃗
E−m

1 ) χ se−ip x ⇒

  

                            Ψ ( s+2)
( x) = √(∣E∣+m)(

σ⃗⋅p⃗
−∣E∣−m

1 ) χ s e
−ip0 x0+i p⃗⋅⃗x

⇒

                            Ψ ( s+2)
( x) = √(∣E∣+m)(

σ⃗⋅(− p⃗)

∣E∣+m
1 ) χ s e−i E x0

+ i p⃗⋅x⃗
⇒

                           Ψ ( s+2)
( x) = √(∣E∣+m)(

σ⃗⋅(− p⃗)

∣E∣+m
1 ) χ se+i∣E∣x0

−i (− p⃗)⋅⃗x  

In conclusion, we started with a negative energy solution of the Dirac equation and we
end up with a solution which has positive energy and reversed 3-momentum. Indeed, if
we reverse  the  momentum 4-vector  this  is  identical  with  one  of  the  positive  energy
solutions  of  Lecture  6.  Hence,  by reversing  the  momentum 4-vector  of  the  negative
energy solutions we obtain solutions  which describe antiparticles with positive energy
(physical particles).

Another observation  is  that  we started with  a  negative  energy  particle  solution,
which moves backward in time, since p0

= E < 0 , and we found that this is
equivalent to an antiparticle solution which has positive energy and moves forward
in  time  because  p0

= ∣E∣ > 0 .  In  other  words,  negative  energy  particle
solutions  going  backwards  in  time  describe  antiparticle  solutions  which  have
positive energy and move forward in time.   
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This is shown diagrammatically in Figure 3.

Figure 3:  A positive energy positron solution moving forward in time is equivalent to a negative energy
electron solution moving backwards in time. E is the energy, p the momentum, Σ the spin and λ the helicity.

Charge Conjugation

In the previous  section we derived anti-particle  solutions  of the Dirac equation  using
heuristic arguments. Here we will derive them in a direct way which also demonstrates
the charge conjugation symmetry of the electromagnetic interactions.

Consider the Dirac equation for an electron in the presence of an electromagnetic field7.

                                  [ iγ μ
(∂μ−ie Aμ )−m ]Ψ (x )=0 e>0             (10.3)

The corresponding equation for a positron in an electromagnetic field will be

                                   [ iγ μ
(∂μ+ ie Aμ)−m ]Ψ c( x)=0                            (10.4)

where Ψ ( x) are the electron spinor  solutions  which were derived in  Lecture 6 and
Ψ c (x ) is  the positron spinor which we will  derive here in terms of  Ψ ( x) .  We

expect that this is true because the trajectory of a charged particle in an electromagnetic
field should not change if one reverses the filed ( Αμ→−Aμ) and replaces the charged
particle with its anti-particle (Ψ ( x)→Ψ c (x )) .  This symmetry of the electromagnetic
interactions is called Charge Conjugation Symmetry.

7 We will see why it takes this form in Lecture 12 when we discuss local gauge invariance.
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So we start by assuming that 

                             Ψ c = AΨ *
⇒ Ψ *

= A−1Ψ c                                          (10.5)  

and from (10.3) and (10.5) we have that

                           [−i γμ*
(∂μ+ie Aμ)−m ] A−1 Ψ c (x ) = 0 ⇒

                       [−i Aγ μ* A−1
(∂μ+ie Aμ)−m ]Ψ c( x) = 0                        (10.6)

By comparing 10.6 with 10.4 we conclude that

                        A γ μ* Α−1=−γ μ ⇒                                                     (10.7)
  
                        Aγ μ

+γμ Α=0 μ = 0, 1, 3
and 
                        Aγ μ

−γμ Α=0 μ = 2

This  means  that  A  anti-commutes  with γ0 , γ1 , γ3 and that  A commutes  with γ2 .
Hence, it must be that

                         A = i γ2                                                                   (10.8)

which means that

                         Ψ c = i γ2Ψ *

In the literature the matrix C is used which is defined as

                       C = A γ0
= i γ2γ 0                                                     (10.9)

Hence,

                        Ψ c = C γ0 Ψ *
= C Ψ̄ T

So Ψc  is a positron spinor since we have demonstrated that the matrices A, C do exist. 
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Note that the exact form of the A and C matrices depends upon the representation of the
gamma matrices that we use.

Exercise: Show that matrix C satisfies the relationship

                                                 γμ
=−C γμΤ C−1

Solution:

Using 10.8  and 10.9 one can show that  

                                                A = A−1
= i γ2

= C γ0                             (10.10)

Using 10.7 and 10.10 we get

Aγ μ *=−γμ Α ⇒ −C γ0
((γμ

)
+
)

Τ
= γ μ C γ0

⇒ −C γ0
(γ0 γμ γ0

)
Τ

= γμC γ0
⇒

−C γ0γ0(γ μ)Τ γ0 = γμ C γ0 ⇒ −C (γμ
)

Τ
= γμC ⇒ −C (γμ)Τ C−1 = γμ ⇒

                                               −γμ
= C (γμ

)
Τ C−1

The following two exercises are left for homework.

Exercise:  Show that the Pauli matrices satisfy σ2 σ⃗*
= −σ⃗ σ2                    (10.11)

Exercise:  Show that in the Pauli-Dirac representation, matrix C satisfies
                              
                                   C = −C−1

= −C +
= −CT                                  (10.12)

Next we will  apply what we have learned and explicitly construct the charge conjugate
spinor of the positive energy solution Ψ (1)( x) of the Dirac equation and we will show
that

Ψ c
(1)

( x) = [Ψ (1)
( x)]c = i γ2

[u(1)
( p⃗)e−i p x

]
*

= u(4)
(− p⃗)ei p x

= υ(1)
( p⃗)ei p x

So we start by taking the charge conjugate of Ψ (1)( x) which represents an electron with
positive helicity.
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                        Ψ c
(1)

= i( 0 iσ 2

−iσ2 0 )√ E+M (
1

σ⃗*
⋅p⃗

E+M ) χ1 ei p x
⇒

                        Ψ c
(1)

= √E+M ( iσ2 σ⃗*
⋅p⃗

E+M
−i σ2 ) χ 1 ei p x

⇒

                            Ψ c
(1)

= √E+M (
σ⃗⋅p⃗

E+M
(−iσ 2

)

−i σ2 ) χ 1e i p x
⇒

                            Ψ c
(1)

= √E+M (
σ⃗⋅p⃗

E+M
1 )(−iσ2

) χ1 ei p x ⇒

                            Ψ c
(1)

= √E+M (
σ⃗⋅p⃗

E+M
1 ) χ 2 ei p x

Hence, we have shown that

Ψ c
(1)

= i γ2
[Ψ (1)

]
*

= u(4)
(− p⃗)e i p x = υ(1)

( p⃗)ei p x = √ E+M (
σ⃗⋅p⃗

E+M
1 ) χ 2 ei p x

which we recognize it to be a positive energy solution. Furthermore, as we already know
u(4)

( p⃗) is  a  spinor  with  negative  helicity.  Therefore, u(4)
(− p⃗) must  have positive

helicity.  This  means  that υ(1)( p⃗) describes  a  positron  with  positive  helicity. So
charge conjugation transformed an electron with positive helicity to a positron which also
has positive helicity. Hence, the charge conjugation operation does not alter helicity.  
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Again, the same result can be obtained from the negative energy solution 

           Ψ (4)
= √∣E∣+M (

σ⃗⋅p⃗
E−M

1 ) χ 2 ei(−p )x
= √∣E∣+M (

σ⃗⋅(− p⃗)
∣E∣+M

1 ) χ 2 ei(− p) x

by  substituting pμ
→− pμ and is consistent with what we had guessed in the previous

section. 

The same way one can show that 

Ψ c
(2)

= i γ2
[Ψ (2)

]
*

= −u(3)
(− p⃗)ei p x = υ(2)

( p⃗)ei p x = √ E+M (
σ⃗⋅p⃗

E+M
1 ) χ 1ei p x

which can also be obtained from Ψ (3) by substituting pμ
→− pμ .

Next, we will study the helicity of the two positron spinors υ1
( p⃗) , υ2

( p⃗) and prove
our previous statement, namely that the first describes a right-handed positron and the
second a left-handed positron. We know that

                                        Σ⃗⋅p̂ u3
( p⃗)=+u3

( p⃗)
and 
                                        Σ⃗⋅p̂ u4

( p⃗)=−u4
( p⃗)

By substituting p⃗→− p⃗ one gets

                         −Σ⃗⋅p̂ u3(− p⃗)=+u3(− p⃗) ⇒ Σ⃗⋅p̂ υ2( p⃗) = −υ2( p⃗)
and 
                         −Σ⃗⋅p̂ u4

(− p⃗)=−u4
(− p⃗) ⇒ Σ⃗⋅p̂ υ1

( p⃗) = +υ1
( p⃗)

Indeed,

                      Ψ c
(1)

= υ(1)
( p⃗)ei p x = √ E+M (

σ⃗⋅p⃗
E+M

1 ) χ 2 ei p x

represents a positron with positive helicity and 
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                        Ψ c
(2)

= υ(2)
( p⃗)e i p x = √ E+M (

σ⃗⋅p⃗
E+M

1 ) χ 1 ei p x

represents a positron with negative helicity. 

Although throughout this discussion we refered to electrons and positrons, these results
apply to any spin ½ fermion. Charge conjugation operation changes always particle to
antiparticle states but leaves helicity unchanged (see Fig. 3). It would change for example
a  negative  helicity  neutrino, ν L ,  which  exists  in  nature  to  a  positive  helicity  anti-
neutrino, ν̄ R which has never been detected.  This means that  the interaction which
produces the neutrinos, the weak interaction, violates charge conjugation symmetry. This
will be discussed more extensively in a later lecture about the Weak Interactions.
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Shown in Figure 4 (left) is Dirac and in Figure 4 (right) is Anderson operating his cloud
chamber which has been inserted in the magnet which provided the magnetic field for
bending the particle trajectories.

Figure 4: Dirac (left) and Anderson (right) with his cloud chamber at CALTECH.
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