Particle Physics Homework Assignment 9

Prof. Costas Foudas 13/11/21
Problem 1: Write down the spinor for a positive energy neutrino of negative helicity and show explicitly that it is en eigenvector for both helicity and handedness.

Problem 2: If \boldsymbol{V}_{L} is a spinor describing neutrinos of negative helicity show that

$$
\frac{1-\gamma_{5}}{2} v_{L}=v_{L} \text { and } \frac{1+\gamma_{5}}{2} v_{L}=0
$$

Problem 3: Prove the identity:

$$
\left(1-\frac{\vec{\sigma} \vec{p}}{E+M}\right)=\frac{1}{2}\left(1-\frac{p}{E+M}\right)(1+\vec{\sigma} \vec{p})+\frac{1}{2}\left(1+\frac{p}{E+M}\right)(1-\vec{\sigma} \vec{p})
$$

where $p=|\vec{p}|$
Problem 4: Show that the operator $\left(1-\boldsymbol{\gamma}_{5}\right) / \mathbf{2}$ acting on a spinor describing a negative energy spin-half massive fermion will result to a spinor with both positive helicity (right handed) and negative helicity (left handed) components. Further more show that the left handed component is suppressed by the ratio $\boldsymbol{M} / \boldsymbol{E}$. Hence if the particle is massless it results to a pure right handed component.

Problem 5: Consider a massive chiral fermion given by:

$$
\Psi_{L}=\frac{\left(1-\gamma_{5}\right)}{2} \Psi
$$

Define the polarization of the chiral massive fermion to be:

$$
P=\frac{\left|\alpha_{R H}\right|^{2}-\left|\alpha_{L H}\right|^{2}}{\left|\alpha_{R H}\right|^{2}+\left|\alpha_{L H}\right|^{2}}
$$

Where $\left|\alpha_{R H}\right|^{2},\left|\alpha_{L H}\right|^{2}$ are the positive and negative helicity amplitudes of the fermion
Show that $\boldsymbol{P}=-\frac{\boldsymbol{p}}{\boldsymbol{E}}=-\boldsymbol{\beta}$ where $\boldsymbol{p}, \boldsymbol{E}$ are the momentum and energy of the fermion.

