Particle Physics, $4^{\text {th }}$ year undergraduate, University of Ioannina

Particle Physics Homework Assignment 8

Prof. Costas Foudas 06/12/22
Problem 1: Consider an experiment where negative pions, $\boldsymbol{\pi}^{-}$, at rest are being captured by a Hydrogen nuclei.

1) Draw conclusions about the spin of the $\boldsymbol{\pi}^{-}$given that the reaction $\boldsymbol{\pi}^{-} \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\gamma}$ occurs.
2) Can the reaction $\pi^{-} \boldsymbol{p} \rightarrow \boldsymbol{n}$ occur if the initial state proton is free (not bound in a nucleus) ? What happens if the proton is bound to a nucleus?
3) Draw conclusions about the parity of the $\boldsymbol{\pi}^{0}$ and $\boldsymbol{\pi}^{-}$provided that the reaction $\boldsymbol{\pi}^{-} \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{\pi}^{0}$ also occurs.
4) Draw conclusions about the π^{0} spin provided that it decays into two photons: $\pi^{0} \rightarrow \gamma \gamma$

Problem 2: The $\boldsymbol{\rho}^{\mathbf{0}}$ is a vector boson, that is an $\mathbf{1}^{-}$state. Explain why the decay $\boldsymbol{\rho}^{0} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \quad$ is allowed and why the decay $\boldsymbol{\rho}^{0} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0}$ is forbidden.

Problem 3: The $\boldsymbol{\eta}$ meson is a $\boldsymbol{0}^{-}$state. Explain why the decay $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}$is forbidden whilst the decay $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{0}$ is allowed via the electromagnetic interaction.

Problem 4:

The decay ${ }^{20} \boldsymbol{N e}\left(\mathbf{1}^{+}\right) \rightarrow{ }^{16} \boldsymbol{O}\left(\mathbf{0}^{+}\right)+\boldsymbol{\alpha}\left(\mathbf{0}^{+}\right)$proceeds via the strong interaction. The spin and parity assigments of the particles are given in parenthesis. Is this decay allowed or forbidden?

Problem 5:

The decay ${ }^{20} \boldsymbol{N e}\left(\mathbf{1}^{+}\right) \rightarrow{ }^{16} \boldsymbol{O}\left(\mathbf{3}^{-}\right)+\alpha\left(\mathbf{0}^{+}\right)$proceeds via the strong interaction. The spin and parity assigments of the particles are given in parenthesis. Is this decay allowed or forbidden?

