Particle Physics Homework Assignment 6

Prof. Costas Foudas, October 2021

Problem 1: Show that: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b}+i \vec{\sigma}(\vec{a} \times \vec{b})$

Problem 2:

1. Solve the Dirac equation $[\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{p}}+\boldsymbol{\beta} \boldsymbol{m}] \Psi=\boldsymbol{E} \Psi$ in the particle rest frame using the Weyl representation.
2. Compute the result of the chirality operators $\frac{\left(1 \pm \gamma_{5}\right)}{2}$ when they are acting on the solutions of the Dirac equation expressed in the Weyl representation.

Problem 3: Positive energy solutions of the Dirac Equation correspond to the 4-vectror current: $\boldsymbol{J}^{\mu}=\mathbf{2} \mathbf{p}^{\mu}=\mathbf{2}(\boldsymbol{E} ; \overrightarrow{\boldsymbol{p}}) ; \quad \boldsymbol{E}>\mathbf{0}$. Show that negative energy solutions correspond to the current $J^{\mu}=-2(E ; \vec{p})=2(|E| ;-\vec{p})=-2 \mathbf{p}^{\mu} ; \quad E<0$.

Problem 4: 1. Show that the helicity operator commutes with the Hamiltonian:

$$
[\vec{\Sigma} \cdot \hat{p}, H]=0
$$

2. Show explicitly that the solutions of the Dirac equation are eigenvectors of the helicity operator:

$$
\vec{\Sigma} \cdot \hat{p} \Psi= \pm \Psi
$$

