Particle Physics Homework Assignment 5

Prof. Costas Foudas, 09/11/22
Problem 1: As shown in class the Dirac matrices must satisfy the anti-commutator relationships:

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}, \quad\left\{\alpha_{i}, \beta\right\}=\mathbf{0} \quad \text { with } \quad \boldsymbol{\beta}^{2}=\mathbf{1}
$$

I. Show that the $\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}$ are Hermitian, traceless matrices with eigenvalues $\mathbf{\pm 1}$ and even dimensionality.
II. Show that, as long as the mass term is not zero and the matrix $\boldsymbol{\beta}$ is needed, there is no 2×2 set of matrices that satisfy all the above relationships. Hence, the Dirac matrices must be of dimension 4 or higher. First show that the set of matrices $(\mathbf{1} ; \overrightarrow{\boldsymbol{\sigma}})$ can be used to express any $\mathbf{2} \times \mathbf{2}$ matrix. That is the coefficients $\boldsymbol{c}_{\mathbf{0}}, \boldsymbol{c}_{\boldsymbol{i}}$ always exist such that any $\mathbf{2} \times \mathbf{2}$ matrix can be written as

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=c_{0} \cdot 1+c_{i} \cdot \sigma_{i}
$$

Having shown this you can pick and intelligent choice for the α_{i} in terms of the Pauli matrices, for example $\alpha_{i}=\sigma_{i}$ which automatically obeys $\left\{\alpha_{i}, \alpha_{j}\right\}=\mathbf{2} \delta_{i j}$,
 $\boldsymbol{\beta}$ matrix that satisfies $\left\{\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}\right\}=\mathbf{0}$.

Problem 2:

1. Show that the Weyl matrices:

$$
\vec{\alpha}=\left(\begin{array}{cc}
-\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

satisfy all the Dirac conditions of Problem 1. Hence, they form just another representation of the Dirac matrices, the Weyl representation, which is different than the standard Pauli-Dirac representation.
2. Show the Dirac matrices in the Weyl representation are

$$
\vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right) \quad \gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

3. Show that in the Weyl representation $\gamma_{5}=\boldsymbol{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}-\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$

Solutions Homework Assignment 5, Particle Physics, Univ. of Ioannina

Problem 3: Use the Dirac Hamiltonian in the standard Pauli-Dirac representation,

$$
H=\vec{\alpha} \cdot \vec{p}+\beta \boldsymbol{m}
$$

to compute $[\boldsymbol{H}, \hat{\boldsymbol{L}}]$ and $[\boldsymbol{H}, \hat{\boldsymbol{\Sigma}}]$ and show that they are not zero.
Use the results to show that:

$$
\left[H, \hat{L}+\left(\frac{1}{2}\right) \hat{\Sigma}\right]=0
$$

where the components of the angular momentum operator is given by:

$$
\hat{L}_{i}=\epsilon_{i j k} \hat{x}_{j} \hat{p}_{k}
$$

and the components of the spin operator are given by:

$$
\hat{\Sigma}_{i}=\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right)
$$

Recall that the Pauli matrices satisfy $\sigma^{i} \sigma^{j}=\delta^{i j}+\boldsymbol{i} \boldsymbol{\varepsilon}^{i j k} \sigma^{\boldsymbol{k}}$

Problem 4: Show that $\left(\gamma^{\mu}\right)^{+}=\gamma^{0} \gamma^{\mu} \gamma^{0}$

