10/27/22

Particle Physics Homework Assignment 2

Dr. Costas Foudas

Problem 1: Show that $g_{\mu \nu} g^{\mu \nu}=4$.

Problem 2: Show explicitly that $\boldsymbol{\Lambda}^{\mu}{ }_{\alpha} \boldsymbol{\Lambda}_{\mu}{ }^{\beta}=\boldsymbol{\delta}_{\alpha}{ }^{\beta}$. Use a Lorentz boost in the x-direction $\left(\overrightarrow{\boldsymbol{\beta}}=\frac{v}{\boldsymbol{v}} \hat{\boldsymbol{x}}_{\mathbf{0}}\right)$ in the place of $\boldsymbol{\Lambda}^{\boldsymbol{\mu}}{ }_{v}$.

Problem 3: Show that the expression $\boldsymbol{T}^{\alpha \beta} \boldsymbol{x}_{\alpha} \boldsymbol{y}_{\boldsymbol{\beta}}$ is a Lorentz invariant provided that $\boldsymbol{T}^{\alpha \beta}$ transforms as a rank-2 tensor and $\boldsymbol{x}_{\boldsymbol{\alpha}}, \boldsymbol{y}_{\boldsymbol{\beta}}$ transform as covariant vectors.

Problem 4: Show that the 4-derivatives $\frac{\partial}{\partial x^{\mu}}$ and $\frac{\partial}{\partial x_{\mu}}$ transform as Lorentz covariant and contravariant vectors respectively.

Problem 5:

1) Write down the definition of a parity transformation.
2) Consider two Lorentz 4-vectors: \boldsymbol{X}^{μ} and $\boldsymbol{Y}^{\mu} . \quad \boldsymbol{X}^{\mu}$ transforms as a polar vector, and \boldsymbol{Y}^{μ} as an axial vector. How do they transform under parity?
3) Which of the following Lorentz invariant quantities is invariant under parity and which is not:

$$
\text { (a) } X^{\mu} X_{\mu} \text { (b) } Y^{\mu} Y_{\mu}(c)\left(X^{\mu}-Y^{\mu}\right) \cdot\left(X_{\mu}-Y_{\mu}\right)
$$

Problem 6:

1) Using Maxwell's equation in three dimensions show that the Electric Field, $\overrightarrow{\boldsymbol{E}}$, is a vector and the magnetic field, $\overrightarrow{\boldsymbol{B}}$, an axial vector.
2) As one can see, Maxwell's equations are not completely symmetric because although they include an electric charge density, $\boldsymbol{\rho}_{\boldsymbol{e}}$, and an electric current density
\vec{J}_{e}, the equivalent magnetic quantities, $\boldsymbol{\rho}_{\boldsymbol{m}}, \overrightarrow{\boldsymbol{J}}_{\boldsymbol{m}}$, are absent indicating that there are no magnetic monopols. Introduce magnetic monopols and write down the completely symmetric Maxwell equations. Show that $\boldsymbol{\rho}_{\boldsymbol{m}}$ must be a pseudoscalar and $\vec{J}_{\boldsymbol{m}}$ an axial vector.
