

Particle Physics, University of Ioannina, 4th year undergraduate course

10/27/22

Particle Physics Homework Assignment 2

Dr. Costas Foudas

Problem 1: Show that $g_{\mu\nu}g^{\mu\nu} = 4$.

- **Problem 2:** Show explicitly that $\Lambda^{\mu}_{\alpha}\Lambda^{\beta}_{\mu} = \delta^{\beta}_{\alpha}$. Use a Lorentz boost in the x-direction $(\vec{\beta} = \frac{v}{c}\hat{x}_0)$ in the place of Λ^{μ}_{ν} .
- **Problem 3:** Show that the expression $T^{\alpha\beta} x_{\alpha} y_{\beta}$ is a Lorentz invariant provided that $T^{\alpha\beta}$ transforms as a rank-2 tensor and x_{α} , y_{β} transform as covariant vectors.
- **Problem 4:** Show that the 4-derivatives $\frac{\partial}{\partial x^{\mu}}$ and $\frac{\partial}{\partial x_{\mu}}$ transform as Lorentz covariant and contravariant vectors respectively.

Problem 5:

- 1) Write down the definition of a parity transformation.
- 2) Consider two Lorentz 4-vectors: X^{μ} and Y^{μ} . X^{μ} transforms as a polar vector, and Y^{μ} as an axial vector. How do they transform under parity?
- 3) Which of the following Lorentz invariant quantities is invariant under parity and which is not:

(a)
$$X^{\mu}X_{\mu}$$
 (b) $Y^{\mu}Y_{\mu}$ (c) $(X^{\mu}-Y^{\mu})\cdot(X_{\mu}-Y_{\mu})$

Problem 6:

- 1) Using Maxwell's equation in three dimensions show that the Electric Field, \vec{E} , is a vector and the magnetic field, \vec{B} , an axial vector.
- 2) As one can see, Maxwell's equations are not completely symmetric because although they include an electric charge density, ρ_e , and an electric current density \vec{J}_e , the equivalent magnetic quantities, ρ_m , \vec{J}_m , are absent indicating that there are no magnetic monopols. Introduce magnetic monopols and write down the completely symmetric Maxwell equations. Show that ρ_m must be a pseudoscalar and \vec{J}_m an axial vector.