Particle Physics Homework Assignment 11

Prof. Costas Foudas 10/01/24
Problem 1: In homework assignment 10 we have shown that the CP transformation of a negative helicity and massless neutrino results to positive helicity antineutrino which is described by

$$
\Psi_{C P}(x)=-v^{(2)}(-\vec{p} ; m=0) e^{+i p^{0} x^{0}-i(-\vec{p}) \cdot \vec{x}}
$$

Apply a Time Reversal transformation on $\boldsymbol{\Psi}_{\boldsymbol{C P}}(\boldsymbol{x})$ to derive the TCP transformed spinor $\boldsymbol{\Psi}_{\boldsymbol{T C P}}(\boldsymbol{x})$.

Problem 2: Consider a negative energy electron coupled to an electromagnetic field. The electron is described by the Dirac equation

$$
[\vec{a} \cdot(-i \vec{\nabla}-e \vec{A}(x))+\beta m+e \Phi(x)] \Psi(x)=-E \Psi(x) \text { where } \quad E>0
$$

1. Show, by requiring that this equation is invariant under TCP, that electromagnetic field transforms under TCP as $\boldsymbol{A}_{T C P}^{\mu}(-\boldsymbol{x})=-\boldsymbol{A}^{\mu}(\boldsymbol{x})$.
2. The TPC transformed electron corresponds to a positive energy solution.

Problem 3: Show that
a)

$$
\boldsymbol{F}^{\mu \nu} \tilde{\boldsymbol{F}}_{\mu \nu}=\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{B}}
$$

b) this term violates both Parity and Time Reversal symmetries.

$$
\boldsymbol{F}^{\mu v}=\partial^{\mu} \boldsymbol{A}^{\nu}-\partial^{\nu} \boldsymbol{A}^{\mu} \text { is the Maxwell tensor and } \tilde{\boldsymbol{F}}^{\mu \nu}=\frac{\mathbf{1}}{\mathbf{2}} \varepsilon^{\mu v a \beta} \boldsymbol{F}_{a \beta} \text { its dual. }
$$

$\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}$ are the electric and magnetic fields respectively.

