Update on the Jet Cross Section Ratio: $\sigma(pp \rightarrow n njets+X n \ge 3) / \sigma(pp \rightarrow n njets+X n \ge 2)$

<u>P.Kokkas</u>, I.Papadopoulos, C.Fountas, I.Evangelou, N.Manthos

University of Ioannina, Greece

QCD meeting 29/9/2009

• Measurement of the Jet Cross Section Ratio:

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; n \ge 3)}{\sigma(pp \to n \text{ jets } + X; n \ge 2)}$$

- Motivation
- Analysis plan
- Previous work:
 - Definition of the measured cross section at hadron level σ ($p_T \ge 50$ GeV; $|\eta| \le 2.5$)
 - R₃₂ at 10pb⁻¹
 - Trigger study (Single Jet Triggers combination: HLT Jet50, Jet80, Jet110)
- Study the dominant systematic from JES uncertainty
 - Perform studies by varying JES by 10%
 - •Evaluate uncertainty of the 2 jet, 3 jet cross sections and R_{32}
 - •Demonstrate the level off cancellation of these errors on the measured R_{32}
- Summary & plans

Motivation

D0 PRL 86, p1955 (2001)

bottom shows the correlated systematic uncertainty. The four smoothed distributions show the JETRAD prediction for the renormalization scales indicated in the legend.

Jet finder radius 0.7 We should be able to extend this up to an $H_T \sim 1.5$ TeV ($\sigma(2J) = 1$ pb @ Pt-hat = 700 GeV)

- Motivation: Measure the ratio R_{32} vs H_T and compare with pQCD predictions with goals:
 - Extend the phase space of the measurement in a regime that goes above the Tevatron.
 - Comparisons of the measured ratio at hadron level with the predictions of pQCD (parton level), after accounting for renormalisation scale and hadronization uncertainty will measure the QCD coupling constant α_s at a scale never measured before.
- We measure the ratio because we expect that it will be less sensitive than absolute cross section measurements to a number of experimental systematics such as
 - the JES uncertainty
 - the uncertainty in the luminosity measurement.

- Definition of the measured cross section at hadron level $\sigma(p_T \ge X; |\eta| \le Y)$

 - Pseudorapidity studies
 p_T resolution studies
 Define the 2 Jet and 3 Jet kinematic cuts.

 - Jet finder studies sisCone7, sisCone5.
- Trigger studies of available HLT's, to select the right scheme
 - Compute trigger efficiencies.
 - Combine triggers to have R₃₂.
- Estimate the dominant systematics (Jet energy scale...)
 - Use the known resolutions and information on systematic shifts in p_{T} to estimate:
 - The Systematics of the 2 jet and 3 jet cross sections.
 - Demonstrate the level off cancellation of these errors on the measured R₃₂
- Estimate the magnitude of hadronisation correction
 - Need to use several hadronisation models.
- Compute the theoretical rate with NLO programs and estimate the uncertainty due to $\mu_{\rm R}$, $\mu_{\rm F}$

Tools and MC Samples used

Analysis done using version CMSSW_2_2_6

- QCD DiJet Summer 08
- Jet Algorithm: sisCone7
- Jet Energy Corrections: L2L3
- Bin p_THat:0-15 GeV not used

	P _T Hat bin	Number of	Cross section	Equivalent
	[GeV]	events	[pb]	Luminosity
			., .	[pb ⁻¹]
1	0-15	103860	51562800000	2.01E-06
2	15-20	129600	949441000	1.37E-04
3	20-30	101880	400982000	2.54E-04
4	30-50	169200	94702500	1.79E-03
5	50-80	103545	12195900	8.49E-03
6	80-120	51300	1617240	3.17E-02
7	120-170	50085	255987	0.19
8	170-230	51840	48325	1.07
9	230-300	54000	10623.2	5.08
10	300-380	60048	2634.94	22.79
11	380-470	51840	722.099	71.79
12	470-600	27648	240.983	114.73
13	600-800	28620	62.4923	457.98
14	800-1000	20880	9.42062	2.22E03
15	1000-1400	24640	2.34357	1.05E04
16	1400-1800	27744	0.156855	1.77E05
17	1800-2200	22848	0.013811	1.65E06
18	2200-2600	22560	0.00129608	1.74E07
19	2600-3000	22800	0.00011404	2.00E08
20	3000-3500	20880	0.0000084318	2.48E09
21	3500-inf	34320	0.0000018146	1.89E11

Definition of measured cross section at hadron level σ(p_T≥50 GeV; |n|≤2.5)

0.22 0.2

0.18 0.16

0.14

0.12

0.1

0.08

0.06

0.04 0.02

100

200

300

Plot the difference:

 $(\eta_{\text{Gen}} - \eta_{\text{Calo}})$ vs η_{Gen}

- For various bins of GenJet p_{T} ۲
- Jet Algorithm sisCone7
- Distributions flat for $|n| \le 2.5$ (Barrel + EndCap regions)
- Reasonable cut: $|n| \leq 2.5$

400

500 p_{_} [GeV/c]

For our analysis we apply a cut on Jet $p_{\tau} \ge 50 \text{ GeV/c}$

With this cut we can compare our results with Tevatron for a region of H_{T} between 300-600 GeV

Around 50 Gev/c p_{T} resolution ~18%

Gen Jet Ratio R₃₂

Evaluation of 3Jet/2Jet Ratio vs H_T .

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; n \ge 3)}{\sigma(pp \to n \text{ jets } + X; n \ge 2)}$$

Event Selection cuts: $|\eta| < 2.5$ and Jet $p_T \ge 50$ GeV/c

Trigger study: Single Jet Triggers

Study of Single Jet HLTs.

- Plot R₃₂ after applying the HLTs
- Evaluate trigger efficiency for ratio R₃₂

Path name	L1 Trigger	Prescale
		(L1xHLT)
HLT Jet30	L1_SingleJet15	500x5
HLT Jet50	L1_SingleJet30	50x1
HLT Jet80	L1_SingleJet50	5x2
HLT Jet110	L1_SingleJet70	1

Trigger	Threshold			
Path name	(100% efficient)			
HLT Jet30	150			
HLT Jet50	150			
HLT Jet80	350			
HLT Jet110	500			
HLT Jet30 & HLT Jet50				

Fully efficient from 150 GeV

Trigger study: Single Jet Triggers

H_⊤ (nJets≥2)

- CMS JetMET group : suggests a flat 10% JES uncertainty.
- Changing all jets p_T by ±10%

First step: Simple study to see if measurement is not very sensitive to JES uncertainty.

Uncertainty 50% to 100% Consistent with other studies

H_T (nJets≥3)

Changing all jets p_T by $\pm 10\%$

Uncertainty 50% to 100% Consistent with other studies

Changing all jets p_T by ±10% Ratio R_{32}

Strong uncertainty cancellation Looks very promising

Inclusive jet cross section $\frac{d^{2}\sigma}{dH_{T}d\eta} = \frac{C_{Smear}}{L \cdot \varepsilon} \cdot \frac{N^{Calo}(jets)}{\Delta H_{T} \cdot \Delta \eta}$

With

 $N^{Gen}(n \text{ jets} \ge 2,3)$: Number of Gen events in bin i of H_T $N^{Calo}(n \text{ jets} \ge 2,3)$: Number of reconstructed Calo events in bin i of H_T $N^{CaloPass}(n \text{ jets} \ge 2,3)$: For Gen events of bin i of H_T all reconstructed Calo events survived cuts and appear to any bin

nJets≥3 : 1/ε₃ , C_{res3}

nJets ≥ 2 : ϵ_2 , 1/C_{res2}

A

Smearing effects dominate

$$B = \frac{N^{Calo}(n \text{ jets} \ge 2)}{N^{CaloPass}(n \text{ jets} \ge 2)} \times \frac{N^{CaloPass}(n \text{ jets} \ge 2)}{N^{Gen}(n \text{ jets} \ge 2)}$$

P.Kokkas, Univ. of Ioannina

17

-0.2

P.Kokkas, Univ. of Ioannina

H_T [GeV]

Summary & Plans

- We performed studies to evaluate systematic uncertainties of 2 jet, 3 jet cross sections and of measured R₃₂ by varying JES by 10%
 - Uncertainties of 2 jet, 3 jet consisted with other studies ~50-100%
 - Our study shows strong uncertainty cancellation for R_{32} (uncertainty of R_{32} is less than 5%)
- We have started to write a note with details of our analysis.
- Still to be done:
 - Closure test (use the correction factor to reproduce the hadron level)
 - Estimate the magnitude of hadronisation uncertainty
 - Compute the theoretical rate with NLO programs and estimate the uncertainty due to $\mu_{\text{R}},~\mu_{\text{F}}$
 - Plan to move to 7 TeV MC samples
 - Studies with Madgraph to follow shortly in the next High P_T meetings