Update on the Jet Cross Section Ratio: σ(pp→ n njets+X n≥3)/ σ(pp→ n njets+X n≥2) at 7 TeV

<u>P.Kokkas</u>, I.Papadopoulos, C.Fountas, I.Evangelou, N.Manthos

University of Ioannina, Greece

High p_T meeting 29/10/2009

- Data
 - Summer09 QCDDiJet@7TeV
- Resolutions studies
 - η resolution studies
 - p_T resolution studies
 - H_T resolution studies
- Ratio R₃₂
 - R₃₂ with Calo-GenJets and sisCone7
 - R₃₂ with Calo-GenJets and antikt7
 - R₃₂ Comparison sisCone7-antikt7
- Trigger Studies at 7TeV
- Comparison Summer09@7TeV and 10TeV
- Summary

Summer09 QCDDiJet@7TeV

Dalversity of Ioamina

Analysis done using versions:

- CMSSW_3_1_4 for Jet Algo: sisCone7
- CMSSW_3_3_0 for Jet Algo: antikt7
- Jet Energy Corrections: L2L3
- Bin p_THat:0-15 GeV not used

	P _T Hat bin [GeV]	Number of events	Cross section [pb]	Equivalent Luminosity [pb ⁻¹]
1	0-15	200000	4.844e+10	4.13e-06
2	15-20	200000	5.794e+08	3.45e-04
3	20-30	200000	2.361e+08	8.47e-04
4	30-50	200000	5.311e+07	3.77e-03
5	50-80	104821	6.358e+06	1.65e-02
6	80-120	200000	7.849e+05	0.25
7	120-170	56296	1.151e+05	0.50
8	170-230	50240	2.014e+04	2.49
9	230-300	54028	4.094e+03	13.20
10	300-380	61325	9.346e+02	65.62
11	380-470	51472	2.338e+02	220.15
12	470-600	20380	7.021e+01	290.27
13	600-800	22784	1.557e+01	1.46e+3
14	800-1000	33996	1.843e+00	1.85e+4
15	1000-1400	27624	3.318e-01	8.34e+4
16	1400-1800	20575	1.086e-02	1.89e+6
17	1800-2200	36670	3.499e-04	1.05e+8
18	2200-2600	21527	7.549e-06	2.85e+9
19	2600-3000	20792	6.465e-08	3.21e+11
20	3000-3500	23460	6.295e-11	3.73e+14

η resolution studies : Summer09 QCDDiJet@7TeV

Jet Algorithm: sisCone7

η resolution studies : Summer09 QCDDiJet@7TeV

- as with sisCone7 Same results
- Reasonable cut on |n|≤2.5

p_T resolution studies: Summer09 QCDDiJet@7TeV

H_T resolution studies: Summer09 QCDDiJet@7TeV

Jet H_T resolution studies at GenJet-CaloJet level:

Important study to define the binning for the ratio R32.

Slightly better resolution for antikt7.

Around 200 Gev H_{T} resolution ${\sim}10\%$

R₃₂: Summer09 QCDDiJet@7TeV

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; n \ge 3)}{\sigma(pp \to n \text{ jets } + X; n \ge 2)}$$

Jet Algorithm sisCone7

At 7 TeV and with a Luminosity of $10pb^{-1}$ is possible to extend the measurement up to $H_T \sim 1200$ GeV (~2 times the scale of Tevatron).

R₃₂ : Summer09 QCDDiJet@7TeV

Evaluation of 3Jet/2Jet Ratio vs H_T

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; n \ge 3)}{\sigma(pp \to n \text{ jets } + X; n \ge 2)}$$

Jet Algorithm antikt7

10

R₃₂ Comparison: sisCone7- antikt7

R₃₂ Calo over Gen Comparison: sisCone7- antikt7

Observe larger smearing effects for antikt7.

Summer09@7TeV Trigger study: HLT Single Jet

Study of Single Jet HLTs.

- Plot R₃₂ after applying the HLTs
- Evaluate trigger efficiency for ratio R₃₂

Path name	L1 Trigger	Prescale
		(L1xHLT)
HLT Jet30	L1_SingleJet15	500x5
HLT Jet50	L1_SingleJet30	50x1
HLT Jet80	L1_SingleJet50	5x2
HLT Jet110	L1_SingleJet70	1

Trigger	Threshold	
Path name	(100%	
	efficient)	
HLT Jet30	150	
HLT Jet50	200	
HLT Jet80	350	
HLT Jet110	500	

Trigger study: Single Jet Triggers

Combine Single Jet HLTs for data collection : •HLT Jet30 (prescale 500x5) •HLT Jet50 (prescale 50x1) •HLT Jet80 (prescale 5x2) •HLT Jet110 (prescale 1) HLT Jet30 covers the first bin of the ratio. Practically the measurement can be done using trigger combination HLT Jet50, 80 and 110

Summer09 QCDDiJet@10TeV

Analysis done using version:

- CMSSW_3_1_4 for Jet Algo: sisCone7
- Jet Energy Corrections: L2L3
- Bin p_THat:0-15 GeV not used

	P _T Hat bin	Number of	Cross section	Equivalent
	[GeV]	events	[pb]	Luminosity
				[pb ⁻¹]
1	0-15	200000	51562800000	3.88E-06
2	15-20	200000	949441000	2.11E-04
3	20-30	200000	400982000	4.99E-04
4	30-50	200000	94702500	2.11E-03
5	50-80	119642	12195900	9.81E-03
6	80-120	200000	1617240	1.24E-01
7	120-170	54568	255987	0.21
8	170-230	54100	48325	1.12
9	230-300	54028	10623.2	4.79
10	300-380	50886	2634.94	19.31
11	380-470	45886	722.099	63.55
12	470-600	55905	240.983	231.99
13	600-800	21424	62.4923	342.83
14	800-1000	21028	9.42062	2.23E03
15	1000-1400	21784	2.34357	9.30E03
16	1400-1800	21810	0.156855	1.39E05
17	1800-2200	21730	0.013811	1.57E06
18	2200-2600	22013	0.00129608	1.70E07
19	2600-3000	22046	0.00011404	1.93E08
20	3000-3500	20908	0.0000084318	2.48E09
21	3500-inf	21060	0.0000018146	1.16E11

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(pp \to n \text{ jets } + X; n \ge 3)}{\sigma(pp \to n \text{ jets } + X; n \ge 2)}$$

Jet Algorithm sisCone7

At 10 TeV and with a Luminosity of $10pb^{-1}$ is possible to extend the measurement up to $H_T \sim 1600 \text{ GeV}$ (~3 times the scale of Tevatron).

16

R₃₂: Summer09 QCDDiJet@7-10TeV

At 7 TeV R₃₂ is slightly smaller when comparing with 10 TeV

With a Luminosity of 10pb⁻¹ is possible to extend the measurement :

@7TeV: $H_T \sim 1200$ GeV (~2 times the scale of Tevatron) @10TeV: $H_T \sim 1600$ GeV (~3 times the scale of Tevatron)

Summary

- Summer09 at 7TeV were analyzed
 - Jet Algorithms: sisCone7 and antikt7
 - Jet Energy Corrections: L2L3
- p_T resolution studies shows:
 - For antikt7 below 100 GeV CaloJet is overestimated by few per cent.
 - Below ~200 GeV resolution is better for antikt7.
- Concerning R₃₂:
 - At 7 TeV and with a Luminosity of $10pb^{-1}$ is possible to extend the measurement of the ratio up to $H_T \sim 1200$ GeV (~2 times the scale of Tevatron).
 - Ratio R₃₂ using antikt7 is constantly higher (Calo and Gen level).
- Trigger studies shows that practically the measurement at 7TeV can be done using a combination of HLT Single Jet 50, 80 and 110.
- We note that we also performed studies to evaluate systematic uncertainties of 2 jet, 3jet cross sections and of measured $\rm R_{32}$ by varying JES by 10%
 - Our study shows strong uncertainty cancellation for $R_{\rm 32}$ (uncertainty of $R_{\rm 32}$ is less than 5%)
 - Same results as at 10 TeV

Comparison sisCone7 – antikt7: Leading Jet p_T (7TeV)

Comparison sisCone7 – antikt7: Second Jet p_T (7TeV)

Comparison sisCone7 – antikt7: 3rd Jet p_T (7TeV)

With

 $N^{Gen}(n \text{ jets} \ge 2,3)$: Number of Gen events in bin i of H_T $N^{Calo}(n \text{ jets} \ge 2,3)$: Number of reconstructed Calo events in bin i of H_T $N^{CaloPass}(n \text{ jets} \ge 2,3)$: For Gen events of bin i of H_T all reconstructed Calo events survived cuts and appear to any bin

JES Systematics : A and B

JES Systematics : AxB

We observe a strong uncertainty cancellation (uncertainty less than 5%)

