Detection of muons at 150 GeV/c and absolute energy calibration of a CMS Preshower Prototype

Panagiotis Kokkas

Univ. of Ioannina

On behalf of the CMS ECAL Collaboration

IPRD06

10th Topical Seminar on Innovative Particle and Radiation Detectors 1-5 October 2006 Siena, Italy

Talk Overview

- The Preshower detector in CMS.
- Preshower calibration (why?)
- Test Beam Setup
- Muon Data Analysis
 - Pedestal Subtraction
 - Common Mode correction
 - Single strip signal extraction
 - Total signal extraction
 - GEANT 4 simulation
 - Energy calibration
 - Data over MC
- Electron Analysis
- Summary

CMS. **The Preshower Detector in CMS** Superconducting Solenoid Silicon Tracker Very-forward Pixel Detector Calorimeter Preshower Hadronic Calorimeter Electromagnetic Muon Calorimeter Detectors **Compact Muon Solenoid**

- The Preshower is a sandwich of two orthogonal layers of silicon strip sensors positioned behind two planes of lead absorbers.
- Provides the position of the foot of the shower in the endcap ECAL.
- Main task is to identify the photons from $\pi^0 \rightarrow \gamma \gamma$ and distinguish them from single photons (π^0/γ separation).

The Preshower Detector

Double γ detection from π^0 decay

Single γ detection

Siena IPRD06

• Total Energy Deposition in ECAL:

 $E_{Total} = E_{Crystals} + E_{Preshower}$

- Preshower should provide $E_{Preshower}$ with an accuracy of ~5%.
- Signal produced by the sensors depends on:
 - Incident particle type and energy.
 - Angle of incidence (varies with η).
 - Sensor capacitance (vary by $\pm 5\%$ due to variation of thickness $320\pm15\ \mu\text{m}$).
 - Charge collection efficiency of the sensors, which decreases with neutron proton fluence (10 y for High Luminosity $\sim 1.6 \times 10^{14} \text{cm}^{-2}$ neutrons and $\sim 0.4 \times 10^{14} \text{cm}^{-2}$ protons for large η).
 - Intrinsic gain of pre-amplifier (PACE3).

Preshower calibration

- PACE 3:
 - 32 channel Preamplifier shaper
 - 32x192 analogue memory for event pipelining

PACE 3 modes of operation:

- "Calibration mode": average gain ~ 20 mV /mip
- "Normal mode": average gain ~ 3.2 mV /mip (1 mip = 83.7 KeV = 3.7 fC for a 320 µm thick sensor)

Test Beam Setup

CERN H4 experimental hall.

- Muon data at 150 GeV/c
- Electron data at 20, 35, 50, 80 and 120 GeV/c
- Pion data at 20, 30, 50, 80 and 120 GeV/c

One Plane of the Preshower Prototype

Pedestal Subtraction

- Use of dedicated pedestal runs.
- Pedestal evaluation per strip.
- For every channel raw values fitted to a Gaussian distribution.
- Extraction of central values and sigmas.

Common Mode correction

- Small displacement of base line, differing on an event by event basis, due to external sources of noise.
- Correction on an event by event basis.
- Method: Projection of the event on the y axis. Fitting of the peak to a Gaussian distribution. Evaluation of common mode.

Single strip signal extraction

- Pedestal region fitted to a Gaussian Distribution (sigma = noise N).
- Signal region fitted to a Landau distribution convoluted with a Gaussian one (MPE = signal S).

X sensor : $S/N\approx 9$ Y sensor : $S/N\approx 7$

Total signal extraction

- Total signal (ADC counts) = The sum of all strips after cutting 5σ (pedestal σ) on every strip.
- Fitting data to a Landau distribution convoluted by a Gaussian:
 - σ_L : Width parameter of Landau density
 - MPE : Most Probable Energy of Landau density
 - Integral : Normalization constant
 - σ_{G} : Width of convoluted Gaussian distribution

GEANT 4 simulation

- For the analysis of the Test Beam Data a Monte Carlo was developed based on Geant 4.
- Fit MC data on a Landau distribution.

	Simulation (keV)	DATA (ADC counts)
Sensor X (MPE)	89.0±0.1	49.0±0.1
Sensor Y (MPE)	89.3±0.1	43.7±0.1

Data over MC

- Electronic noise added in MC in the form of a Gaussian distribution with widths:
 - X sensor: 5.4 ADC counts correspond to 9.8 keV
 - Y sensor: 5.9 ADC counts correspond to 12.1 keV

Electron Detection

- Analysis of electron Data.
- Pedestal Subtraction.
- Common Mode correction.
- Total signal (ADC counts) = The sum of all strips after cutting 5σ (pedestal σ) on every strip.
- Use Absolute Energy Calibration (muons).
- Going from "calibration" to "normal" mode.
- Plot electron Energy Deposition in X and Y sensor.

Electron Detection

- Electrons Mean Energy Deposition per sensor and for the various momentum.
- Red points Monte Carlo.

Summary

- The Muon signal per silicon sensor is extracted, after pedestal subtraction and common mode correction.
- The absolute calibration of the Preshower sensors is demonstrated.
- MC in excellent agreement with data.
- Electron pion analysis in progress.

- Calibration before detector construction.
 - Calibration during construction of the ladders using cosmic muons.
- Calibration during data taking.
 - An absolute calibration will be performed at regular intervals in-situ in CMS using muons or even pions.

Spare Transparencies

Preshower calibration

Muons with momentum \sim 150 GeV/c are on the most probable energy loss plateau. Energy deposition \sim 91 KeV for a 320µm thick sensor.

Most probable energy loss in silicon, scaled to the mean loss of a minimum ionising particle, 388 eV/ μ m (1.66 MeV g⁻¹ cm²) (PDG 2004)

Calibration using cosmic muons

- Stack of 6 ladders.
- Two scintillators for triggering.
- Trigger rate ~1Hz.
- ~1 week data taking.
- One year operation for 536 ladders (4300 µmodules).

In-situ Absolute Calibration

- Using muon or jet events.
- Use tracker/muon system to predict ES strips that have been traversed.

